Aufbau und Identifikation von Stoffgleichungen für höhere Kontinua mittels Homogenisierungsverfahren

S. Forest

1 Einleitung

lautet: die charakteristische Länge l der Materialinhomogenitäten soll viel kleiner sein als die Länge L der gerechneten Struktur oder, genauer gesagt, als die kleinste Wellenlänge der räumlichen Variation der makroskopischen Beanspruchungen. Dies gewährleistet, daß ein homogenes Ersatzmaterial (HEM) als Cauchy Kontinuum definiert werden kann. Als Erste betrachteten Beran und Mc Coy (1968) den Fall langsam variiierender Makrofehler für random heterogene linear elastische Werkstoffe. Sie leiteten ein nichtlokales elastisches HEM ab, das durch ein Medium zweiten Grades approximiert werden konnte. Im Falle periodischer Mikrostruktur haben Gambin und Kröner (1989) die Methode der asymptotischen Entwicklungen angewandt, um ein HEM zweiten Grades herzuleiten.

In der vorliegenden Arbeit wird gezeigt, wie ein mikromorphes oder Cosserat HEM für heterogene elastische und elastoplastische Werkstoffe im Sinne der periodischen Homogenisierung aufgebaut werden kann.

2 Heterogene Materialien unter starken makroskopischen Beanspruchungsgradienten

2.1 Klassische Homogenisierungsmethoden

Im Rahmen der klassischen Homogenisierungstheorie wird ein repräsentatives Volumenelement Ω definiert, das die relevanten Aspekte der Mikrostruktur des heterogenen Materials enthält. Dann muß das folgende Randwertproblem auf Ω gelöst werden:

\[
\begin{align*}
\varepsilon & = \frac{1}{\Omega} (\mathbf{u} \otimes \nabla + \nabla \otimes \mathbf{u}) \\
\sigma : \nabla & = 0 \quad \forall \mathbf{x} \in \Omega \\
\text{Randbedingungen}
\end{align*}
\]

wobei \mathbf{u} die Verschiebung ist, σ der klassische Spannungstensor und ∇ der Nabla-Operator. Im Falle von Randomwerkstoffen muß Ω eine grosse Zahl von Heterogenitäten enthalten, um repräsentativ zu sein. Dann kann man homogene Randbedingungen einführen:

\[
\mathbf{u} = \mathbf{E} \cdot \mathbf{x} \quad \forall \mathbf{x} \in \partial\Omega \quad \text{oder} \quad \sigma \cdot \mathbf{n} = \mathbf{\Sigma} \cdot \mathbf{n} \quad \forall \mathbf{x} \in \partial\Omega
\]

so daß $\mathbf{E} = < \varepsilon >$, $\mathbf{\Sigma} = < \sigma >$ die mittleren makroskopischen Verzerrungs- und Spannungszustände sind. Wenn das Material eine periodische Mikrostruktur aufweist, dann ist Ω die Einheitszelle und das Verschiebungsfeld nimmt die folgende Form an:

\[
\mathbf{u} = \mathbf{E} \cdot \mathbf{x} + \mathbf{\nu}
\]

wobei $\mathbf{\nu}$ den gleichen Wert an entgegengesetzten Punkten von $\partial\Omega$ annimmt. Ein Beispiel für eine Einheitszelle für ein Sandwich-Material wird in Bild 1 gegeben. Die dunkle Schicht ist aus Stahl und die Matrix aus weichem Material. Es werden aber zuerst nur die linearen elastischen Eigenschaften bei kleinen Verformungen betrachtet. Drei elementare Beanspruchungsbedingungen müssen ausgeübt werden, um die effektiven elastischen Konstanten zu ermitteln (Bild 1). Für alle erwähnten Randbedingungen gilt die sogenannte Hill-Mandel Bedingung:

\[
< \sigma^* : \varepsilon' > = < \sigma^* > : < \varepsilon' >
\]

wobei σ^* ein divergenzfreies Spannungsfeld ist und ε' ein kompatibles Verzerrungsfeld. Diese Vorgehensweise setzt das schon erwähnte Verhältnis $l \ll L_w$ zwischen den charakteristischen Längen des Problems voraus. Es bedeutet, daß die makroskopischen Größen sich so langsam ändern, daß \mathbf{E} und $\mathbf{\Sigma}$ als konstant über Ω betrachtet werden können.
2.2 Nichthomogene Randbedingungen an der Einheitszelle
Wenn starke Gradienten der makroskopischen Felder auftreten, kann man die Randbedingungen (2) durch einen quadratischen Ansatz ersetzen:

\[\mathbf{u} = \mathbf{E} \mathbf{x} + \frac{1}{2} \nabla \varepsilon \cdot (\mathbf{x} \otimes \mathbf{x}) \quad \forall \mathbf{x} \in \partial \Omega \] (5)

wobei \(\nabla \varepsilon \) ein konstanter Tensor dritter Stufe ist (Forest, 1998). Hier soll aber ein spezieller Fall untersucht werden, wo nur der Krümmungsanteil \(\mathbf{K} \) von \(\mathbf{D} \) betrachtet wird:

\[\mathbf{u} = \mathbf{E} \mathbf{x} + \frac{2}{3} \varepsilon : ((\mathbf{K} \mathbf{x}) \otimes \mathbf{x}) \quad \text{mit} \quad \text{sp}(\mathbf{K}) = 0 \] (6)

wo \(\varepsilon \) der Permutationstensor ist. Es folgt der Ausdruck der makroskopischen Deformation und deren Krümmung:

\[\mathbf{F} = \mathbf{u} \otimes \nabla \mathbf{x} > \quad \mathbf{\hat{F}} = \frac{1}{2} \varepsilon : \mathbf{F} \quad \mathbf{\hat{F}} \otimes \nabla \mathbf{x} = \mathbf{K} \] (7)

wobei \(x \) (bzw. \(X \)) die lokalen (bzw. makroskopischen) Koordinaten sind. Bei diesem Verfahren kann man einer Einheitszelle eine Krümmung vorgeben. Eine allgemeinere Methode der Entwicklung von nichthomogenen Randbedingungen wird in Abschnitt 3 dargestellt.
2.3 Biegsteifigkeit einer Einheitszelle
Für periodische Medien wird die nichthomogene Randbedingung (6) wie folgt erweitert:

\[
\mathbf{u} = \mathbf{E} \mathbf{x} + \frac{2}{3} \mathbf{e} : (\mathbf{K}(\mathbf{x}) \otimes \mathbf{x}) + \mathbf{v}
\]
(8)

und \(\mathbf{v} \) nimmt den gleichen Wert an entgegengesetzten Punkten des Randes an. In Bild 2 wird dem Sandwich-Material eine konstante Krümmung vorgegeben. Der Effekt der Anwendung von periodischen Bedingungen ist klar zu erkennen. Für beide Fälle (6) und (8) gilt eine erweiterte Hill-Mandel Gleichung:

\[
< \sigma : \epsilon >= \Sigma : \mathbf{E} + \mathbf{M} : \mathbf{K} \quad \text{mit} \quad \Sigma = < \sigma > \quad M_{ij} = \frac{2}{3} < \epsilon_{ikl} \sigma_{kj} >
\]
(9)

Bild 2. Einfache Krümmung einer Einheitszelle mit nichthomogenen Randbedingungen (links) und generalisierten periodischen Randbedingungen (rechts).

3 Polynomentwicklung des lokalen Verschiebungsfeldes
3.1 Definition generalisierter Freiheitsgrade
Im allgemeinen kann das erweiterte HEM als mikromorph betrachtet werden. Aber dann müssen die neuen Freiheitsgrade als Funktion der lokalen Felder in \(\Omega \) definiert werden. Die Verschiebung \(\mathbf{U}(\mathbf{X}) \) und die Mikrodeformation \(\chi(\mathbf{X}) \) werden als die beste Approximierung des lokalen Verschiebungsfeldes durch eine homogene Drehung und Verzerrung interpretiert:

\[
(\mathbf{U}(\mathbf{X}), \chi(\mathbf{X})) = \min \frac{1}{||\mathbf{u}(\mathbf{x}) - \mathbf{U} - \chi(\mathbf{x} - \mathbf{X})||^2}_\Omega
\]
(10)

Die Lösung dieses Minimierungsproblems lautet:

\[
\mathbf{U}(\mathbf{X}) = < \mathbf{u}(\mathbf{x}) > \quad \chi(\mathbf{X}) = \mathbf{u} \otimes (\mathbf{x} - \mathbf{X}) \cdot \mathbf{A}^{-1} \quad \text{mit} \quad \mathbf{A} = < (\mathbf{x} - \mathbf{X}) \otimes (\mathbf{x} - \mathbf{X}) >
\]
(11)

Die zugeordneten Gradienten lauten:

\[
\mathbf{U} \otimes \nabla \mathbf{x} = < \mathbf{u} \otimes \nabla \mathbf{x} > \quad \chi \otimes \nabla \mathbf{x} = < (\mathbf{u} \otimes \mathbf{x}) \otimes \nabla \mathbf{x} > \cdot \mathbf{A}^{-1} - \mathbf{U} \otimes \mathbf{A}^{-T}
\]
(12)
3.2 Zweidimensionales Cosserat - Ersatzkontinuum

In Forest und Sab (1998) wurde der Spezialfall eines zweidimensionalen Cosserat - HEM untersucht. Dies entspricht einer antimetrischen Mikrodeformation \(\chi \). Der Einfachheit halber wird eine quadratische Einheitszelle \(\Omega \) mit Kantenlänge \(l \) gewählt. Die Freiheitsgrade sind die Verschiebung \(\mathbf{U} \) und die Mikrodrehung \(\Phi \), die mit den lokalen Größen verbunden sind, wie aus (11) folgt:

\[
\mathbf{U}(\mathbf{X}) = \begin{pmatrix} \mathbf{u} > \Omega \\
\end{pmatrix} \quad \Phi(\mathbf{X}) = \frac{6}{l^2} < (\mathbf{x} - \mathbf{X}) \times \mathbf{u} > \Omega
\]

(13)

Die zugeordneten Cosserat - Verzerrungsmaße sind die klassische Verzerrung \(\mathbf{E} \), die relative Drehung \(\Omega - \Phi \) und die Krümmung \(\mathbf{K} \):

\[
\mathbf{E} = \frac{1}{2}(\nabla \mathbf{x} \otimes \mathbf{u} + \mathbf{u} \otimes \nabla \mathbf{x})(\mathbf{X}) \quad \Omega(\mathbf{X}) = \frac{1}{2}\left(\frac{\partial U_2}{\partial X_1} - \frac{\partial U_1}{\partial X_2} \right) \mathbf{e}_3 = \Omega(\mathbf{X}) \mathbf{e}_3
\]

\[
\mathbf{K} = \frac{\partial \Phi}{\partial X_1} \mathbf{e}_1 + \frac{\partial \Phi}{\partial X_2} \mathbf{e}_2 = \frac{6}{l^2} < (\mathbf{x} \times \mathbf{u}) \mathbf{e}_3 \nabla \mathbf{x} > \Omega = -\frac{6}{l^2}((\mathbf{U} \mathbf{e}_3) \nabla \mathbf{x})
\]

(14)

(15)

wobei \((\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)\) eine orthonormale Basis bezeichnet. Diese Größen werden jetzt für den Fall eines polynomialen lokalen Verschiebungsfeldes ausgewertet:

\[
u_i = A_i + B_{i1} \tilde{x}_1 + B_{i2} \tilde{x}_2 + C_{i1} x_1^2 + C_{i2} x_2^2 + 2 C_{i3} x_1 \tilde{x}_2 + D_{i1} \tilde{x}_1^3 + D_{i2} \tilde{x}_2^3 + 3 D_{i3} \tilde{x}_1 \tilde{x}_2 + 3 D_{i4} \tilde{x}_1^2 \tilde{x}_2 (16)
\]

mit \((i = 1, 2), (\tilde{x}_1 = x_1/l, \tilde{x}_2 = x_2/l)\). Unter den Bedingungen \(E_{ij}(\mathbf{X} = 0) = B_{ij} \) und konstanter Krümmung \(\mathbf{K} \) können die Koeffizienten des Polynoms mit den Cosserat - Verzerrungsmaßen identifiziert werden:

\[
(\Phi - \Omega)(\mathbf{X}) = \frac{D_{12}}{10l} \quad \mathbf{K}(\mathbf{X}) = \frac{C_{21} - C_{13}}{l^2} \mathbf{e}_1 + \frac{C_{23} - C_{12}}{l^2} \mathbf{e}_2
\]

(17)

Die endgültige Form des Polynoms für die Ermittlung der effektiven Eigenschaften eines zweidimensionalen Cosserat HEM lautet:

\[
\begin{align*}
\mathbf{u}_1^* &= B_{i1} \tilde{x}_1 + B_{i2} \tilde{x}_2 - C_{i3} \tilde{x}_2^2 + 2 C_{i3} \tilde{x}_1 \tilde{x}_2 + D_{i1} \tilde{x}_1^3 - 3 D_{i4} \tilde{x}_1^2 \tilde{x}_2) \\
\mathbf{u}_2^* &= B_{i2} \tilde{x}_1 + B_{i2} \tilde{x}_2 - C_{i3} \tilde{x}_1^2 + 2 C_{i3} \tilde{x}_1 \tilde{x}_2 - D_{i1} \tilde{x}_1^3 - 3 D_{i4} \tilde{x}_1^2 \tilde{x}_2)
\end{align*}
\]

(18)

Bild 3. Vorgegebene relative Drehung der Mikrostruktur.

Die Lösung des Randwertproblems auf \(\Omega \) wird dann unter der Form \(\mathbf{u} = \mathbf{u}^* + \mathbf{u} \) gesucht, mit periodischen Bedingungen für \(\mathbf{u} \) und anti-periodischen Bedingungen für \(\mathbf{e}_1 \). Der quadratische Term in den Gleichungen (18) entspricht dem Vorschlag (6), während ein kubischer Ansatz notwendig ist, um die Wirkung von einer relativen Drehung zu merken. Im Gegensatz zu Abschnitt 2.3 ist das gefundene HEM ein Cosserat - Medium ohne inneren Zwang. In Bild 3 wird gezeigt, wie einer Einheitszelle eine relative Drehung

\[<\mathbf{u} > \Omega > \Phi(\mathbf{X}) = \frac{6}{l^2} < (\mathbf{x} - \mathbf{X}) \times \mathbf{u} > \Omega
\]
3.3 Dreiimensionales Cosserat - Ersatzkontinuum

Es liegt nahe, die Form (16) des Polynoms zum dreidimensionalen Fall folgenderweise zu verallgemeinern:

\[
 u_i = B_{i1} \tilde{x}_1 + B_{i2} \tilde{x}_2 + B_{i3} \tilde{x}_3 + C_{i1} \tilde{x}_1^2 + C_{i2} \tilde{x}_2^2 + C_{i3} \tilde{x}_3^2 + 2C_{i4} \tilde{x}_1 \tilde{x}_2 + 2C_{i5} \tilde{x}_2 \tilde{x}_3 + 2C_{i6} \tilde{x}_3 \tilde{x}_1 + D_{i1} \tilde{x}_1^3 + D_{i2} \tilde{x}_2^3 + D_{i3} \tilde{x}_3^3 + 3D_{i4} \tilde{x}_1^2 \tilde{x}_2 + 3D_{i5} \tilde{x}_2^2 \tilde{x}_3 + 3D_{i6} \tilde{x}_3^2 \tilde{x}_1 + 3D_{i8} \tilde{x}_3 \tilde{x}_1 \tilde{x}_2 + E_{i1} \tilde{x}_1 \tilde{x}_2 \tilde{x}_3 \tag{19}
\]

Nach Gleichung (15) lauten dann die drei ersten Komponenten der Krümmung:

\[
 K_{11} = C_{34} - C_{26} + 3(D_{34} - D_{29}) \tilde{x}_1 + (3D_{25} - \frac{E_1}{2}) \tilde{x}_2 + (\frac{E_2}{2} - 3D_{28}) \tilde{x}_3 \\
 K_{22} = C_{15} - C_{24} + (\frac{E_1}{2} - 3D_{34}) \tilde{x}_1 + 3(D_{16} - D_{35}) \tilde{x}_2 + (3D_{17} - \frac{E_3}{2}) \tilde{x}_3 \\
 K_{33} = C_{26} - C_{15} + (3D_{29} - \frac{E_1}{2}) \tilde{x}_1 + (\frac{E_2}{2} - 3D_{16}) \tilde{x}_2 + (3D_{28} - 3D_{17}) \tilde{x}_3
\]

Es stellt sich dann aber heraus, daß die Spur der Krümmung notwendigerweise null ist. Das bedeutet, daß die vorige Form des Polynoms nicht erlaubt, einer Einheitszelle eine sphärische Krümmung zuzuweisen. Dieses wird erst möglich, wenn man eine Polyomialentwicklung bis zum 4. Grad einführt:

\[
 u_1 = E_{11} \tilde{x}_1 + E_{12} \tilde{x}_2 + E_{31} \tilde{x}_3 - k_{31} \tilde{x}_1 \tilde{x}_2 - k_{22} \tilde{x}_2^2 + k_{21} \tilde{x}_1 \tilde{x}_3 + \frac{k_{23}}{2} \tilde{x}_3^2 + 2(k_{11}^{\text{dev}} - k_{33}^{\text{dev}}) \tilde{x}_2 \tilde{x}_3 \\
 + 10\Theta_3(x_2^2 - 3x_3^2\tilde{x}_2) - 10\Theta_2(x_3^2 - 3x_1^2\tilde{x}_3) + \frac{10\text{sp}(k)}{3}(x_3^2 - x_2^2) \tilde{x}_2 \tilde{x}_3 \\
 u_2 = E_{12} \tilde{x}_1 + E_{22} \tilde{x}_2 + E_{23} \tilde{x}_3 - k_{32} \tilde{x}_1 \tilde{x}_2 - k_{22} \tilde{x}_2^2 + k_{21} \tilde{x}_1 \tilde{x}_3 - \frac{k_{23}}{2} \tilde{x}_3^2 - 2(k_{11}^{\text{dev}} - k_{33}^{\text{dev}}) \tilde{x}_2 \tilde{x}_3 \\
 - 10\Theta_3(x_3^2 - x_1^2\tilde{x}_1) + 10\Theta_2(x_3^2 - 3x_2^2\tilde{x}_2) + \frac{10\text{sp}(k)}{3}(x_3^2 - x_2^2) \tilde{x}_2 \tilde{x}_3 \\
 u_3 = E_{31} \tilde{x}_1 + E_{23} \tilde{x}_2 + E_{33} \tilde{x}_3 - k_{33} \tilde{x}_1 \tilde{x}_3 - \frac{k_{31}}{2} \tilde{x}_1^2 + k_{13} \tilde{x}_1 \tilde{x}_3 + k_{12} \tilde{x}_2^2 + 2(k_{11}^{\text{dev}} - k_{33}^{\text{dev}}) \tilde{x}_2 \tilde{x}_3 \\
 + 10\Theta_2(x_3^2 - 3x_1^2\tilde{x}_1) - 10\Theta_3(x_2^2 - 3x_2^2\tilde{x}_2) + \frac{10\text{sp}(k)}{3}(x_3^2 - x_2^2) \tilde{x}_2 \tilde{x}_3
\]

wobei \(k^{\text{dev}}\) der deviatorische Anteil von \(k\) ist. Es folgt:

\[
 \Phi - \Omega = \Theta + \frac{\text{sp}(k)}{3} \mathbf{x} \\
 K_{ij} = k_{ij} - 10\text{sp}(k)X_iX_j \quad \text{mit} \ i \neq j \tag{20}
\]

\[
 K_{11} = k_{11}^{\text{dev}} + \frac{\text{sp}(k)}{3} + 10\text{sp}(\mathbf{k})X_1^2 - 5\text{sp}(\mathbf{k})(X_1^2 + X_2^2) \tag{21}
\]

4 Elastoviskoplastische Cosserat - Medien

Es wird zuerst ein allgemeiner phänomenologischer konstitutiver Rahmen für nichtlineare Cosserat - Stoffgleichungen vorgestellt. Dann wird gezeigt, wie die vorige erweiterte Homogenisierungsmethode benutzt werden kann, um die Materialparameter dieser Gleichungen zu ermitteln.

4.1 Standard Cosserat - Medien

Die Cosserat - Verzerrungsmaße werden jetzt wie folgt definiert und in elastische und plastische Anteile zerlegt:

\[
 \tilde{\mathbf{E}} = \tilde{\mathbf{U}} \otimes \nabla + \tilde{\mathbf{E}}^e + \tilde{\mathbf{E}}^p \\
 \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^e + \tilde{\mathbf{K}}^p \tag{22}
\]
Die Prinzipien der Kontinuumsthermodynamik in lokaler Form werden jetzt ausgewertet, um die Zustandsgleichungen herzuleiten. Die innere Energie, die Entropie und die freie Energie werden mit \(e, \eta \) bzw. \(\psi \) bezeichnet. Die freie Energie ist eine Funktion von \(E^e, K^e \), von der Temperatur \(T \) und von inneren Variablen \(\alpha \). Die Energiebilanz, die Entropiegleichung, die intrinsische Dissipation und schließlich die Zustandsgleichungen lauten dann:

\[
\rho \dot{e} = \Sigma : \dot{E} + M : \dot{K} - \sum q
\]

(23)

\[
\rho \dot{\eta} + \frac{q}{T} \sum \geq 0 \quad \Sigma : \dot{E} + M : \dot{K} - \rho(\dot{\psi} + \eta \dot{T}) - \frac{q}{T} T \sum \geq 0
\]

(24)

\[
\rho D = \Sigma : \dot{E} + M : \dot{K} - \rho(\dot{\psi} + \eta \dot{T})
\]

\[
= (\Sigma - \rho \frac{\partial \psi}{\partial E^e}) : \dot{E}^e + (M - \rho \frac{\partial \psi}{\partial K^e}) : \dot{K}^e - \rho(\frac{\partial \psi}{\partial T} + \eta) \dot{T} + \Sigma : \dot{E}^p + M : \dot{K}^p - \rho \frac{\partial \psi}{\partial \alpha} : \dot{\alpha}
\]

(25)

wobei \(\Sigma \) und \(M \) die Kraft- bzw. Momentenspannungen sind. Die Theorie von klassischen sogenannten Standardmaterialien (Germain u.a., 1983) wird auf Cosserat - Kontinua erweitert, indem ein konvexes viskoelastisches Dissipationspotential \(\Omega(\Sigma, M, \mathbf{X}) \) eingeführt wird:

\[
\dot{E}^p = \frac{\partial \Omega}{\partial \Sigma} \quad \dot{K}^p = \frac{\partial \Omega}{\partial M} \quad \dot{\alpha} = \frac{\partial \Omega}{\partial \alpha}
\]

(27)

Die Konvexität des Potentials gewährleistet die identische Erfüllung der Bedingung positiver intrinsischer Dissipation.

4.2 Anwendung auf von Mises Cosserat - Plastizität

Zu dem obigen allgemeinen konstitutiven Rahmen gehören zwei wichtige Klassen von nichtlinearen Cosserat - Medien. Für die erste Materialklasse werden eine einzige Fließfunktion \(f(\Sigma, M, \mathbf{X}) \) als Potential und ein plastischer Multiplikator \(\dot{p} \) eingeführt:

\[
\dot{E}^p = \dot{p} \frac{\partial f}{\partial \Sigma} \quad \dot{K}^p = \dot{p} \frac{\partial f}{\partial M}
\]

(28)

Als Beispiel kann man die klassische von Misessche Plastizität auf Cosserat - Medien erweitern:

\[
f(\Sigma, M, R) = J_2(\Sigma, M) - R(p); \quad J_2(\Sigma, M) = \sqrt{\left(\frac{3}{2} \right) \left(a_1 s : s + a_2 s : s^T + b_1 M : M + b_2 M : M^T \right)}
\]

(29)

\[
\dot{E}^p = \frac{\dot{p}}{2} \left(a_1 s + a_2 s^T \right) J_2(\Sigma, M) \quad \dot{K}^p = \frac{\dot{p}}{2} \left(b_1 M + b_2 M^T \right) J_2(\Sigma, M)
\]

(30)

Der plastische Multiplikator ist ein Maß für die kumulierte plastische Verzerrung und Krümmung und sein Ausdruck für den Fall \(a_1 = a_2 = a, b_1 = b, b_2 = 0 \) ist \(\dot{p} = \sqrt{\frac{2}{3}}(2a \dot{E}^p : \dot{E}^p + b \dot{K}^p : \dot{K}^p) \). Für die zweite Materialklasse elastoviskoelastischer Cosserat - Medien wird das Dissipationspotential in zwei Teile zerlegt:

\[
\Omega_{\text{tot}} = \Omega(\Sigma, R) + \Omega_c(M, R_c); \quad \dot{E}^p = \frac{\partial \Omega_{\text{tot}}}{\partial \Sigma} = \frac{\partial \Omega}{\partial \Sigma} \dot{K}^p = \frac{\partial \Omega_{\text{tot}}}{\partial M} = \frac{\partial \Omega_c}{\partial M}; \quad \dot{\alpha} = -\frac{\partial \Omega}{\partial R}; \quad \dot{\kappa} = -\frac{\partial \Omega_c}{\partial R_c}(31)
\]

wo \(\Omega \) und \(\Omega_c \) konvex sind. Im elastoplastischen Fall gibt es dann zwei getrennte Fließfunktionen und zwei plastische Multiplikatoren. Daher kann eine zweite Erweiterung der von Mises Plastizität auf Cosserat - Medien formuliert werden:

\[
f(\Sigma, R) = J_2(\Sigma) - R(p, \kappa) \quad f_c(M, R_c) = J_2(M) - R_c(p, \kappa)
\]

(32)
\[J_2(\Sigma) = \sqrt{\frac{3}{2}(a_1 \Sigma : s + a_2 \Sigma : s^T)} \quad J_2(M) = \sqrt{\frac{1}{2}(b_1 M : M + b_2 M : M^T)} \quad \dot{E}^p = \dot{p} \frac{\partial f}{\partial M} \]
\[\dot{K}^p = \dot{\kappa} \frac{\partial f}{\partial \Sigma} \quad \dot{\kappa} = \sqrt{\frac{2}{3} \left(A_1 \dot{E}^p : \dot{E}^p + A_2 \dot{E}^p : \dot{E}^p T \right)} \]
(33)
(34)

mit \(A_1 = a_1/(a_1^2 - a_2^2) \) und \(A_2 = -a_2/(a_1^2 - a_2^2) \). Mit einem solchen Modell kann die Auswertung der Fließbedingungen zu unbestimmten plastischen Multiplikatoren führen. Die viskoplastische Formulierung (31) wird dann als Regularisierungsmethode empfohlen, wobei \(\Omega \) ein viskoplastisches Potential und \(\Omega_c \) ein plastisches Potential sein dürfen.

4.3 Kinematische Krümmungs-Verfestigung

Als Beispiel von inneren Variablen wurden in dem letzten Abschnitt isotope Verfestigungsvariablen \(R \) und \(R_c \) eingeführt. Ein weiteres Beispiel von tensorwerten inneren Variablen wird hier gezeigt. Die Einführung kinematischer Verfestigungsvariablen kann notwendig werden, sobald zyklische Beanspruchungen eines heterogenen Materials betrachtet werden. Dafür werden die zwei Klassen der von Mises elastoplastischen Cosserat - Medien erweitert, indem man zwei Rückspannungen \(\mathbf{X} \) und \(\mathbf{X}_c \) berücksichtigt:

\[f(\Sigma, M, R, \mathbf{X}, \mathbf{X}_c) = J_2(\Sigma - \mathbf{X}, M - \mathbf{X}_c) - R(p) \]
\[\dot{E}^p = \dot{p} \frac{3}{2} \left(a_1 (s - \mathbf{X}) + a_2 (s - \mathbf{X})^T \right) \quad \dot{K}^p = \dot{\kappa} \frac{3}{2} \left(b_1 (M - \mathbf{X}_c) + b_2 (M - \mathbf{X}_c)^T \right) \]
(35)
(36)

für die erste Materialklasse mit einem einzigen Kriterium, und

\[f(\Sigma, R, \mathbf{X}) = J_2(\Sigma - \mathbf{X}) - R(p, \kappa), \quad f_c(M, R_c, \mathbf{X}_c) = J_2(M - \mathbf{X}_c) - R_c(p, \kappa) \]
\[\dot{E}^p = \dot{p} \frac{3}{2} \left(a_1 (s - \mathbf{X}) + a_2 (s - \mathbf{X})^T \right) \quad \dot{K}^p = \dot{\kappa} \frac{1}{2} \left(b_1 (M - \mathbf{X}_c) + b_2 (M - \mathbf{X}_c)^T \right) \]
(37)
(38)

für die zweite Materialklasse. Der symmetrische Anteil der Variablen \(\mathbf{X} \) entspricht der klassischen kinematischen Verfestigung, die in der Lage ist, den klassischen Bauschinger Effekt zu beschreiben. Was kann aber die physikalische Bedeutung einer Momenten-Rückspannung \(\mathbf{X}_c \) sein? Wie können die Materialparameter bestimmt werden, die in der zugehörigen Entwicklungsbeziehung auftreten können? Die obigen erweiterten Stoffgleichungen können benutzt werden, um das mechanische Verhalten eines heterogenen Werkstoffs mit periodischer Mikrostruktur zu beschreiben. Wenn die nichtlinearen Eigenschaften der verschiedenen Phasen oder Komponenten des heterogenen Materials bekannt sind, kann die im Abschnitt 3 beschriebene Homogenisierungsmethode angewandt werden, um die Antwort der Einheitszelle auf homogene und nichthomogene makroskopische Beanspruchungen vorherzusagen. Dann können die Materialparameter des vorgeschlagenen nicht-linearen Modells angepaßt werden. Reine Krümmungs - Verfestigung \(\mathbf{X}_c \) tritt auf, wenn zyklische Biegung auf die Einheitszelle \(\Omega \) ausgeübt wird. Auf Bild 5 sieht man den plastischen Zustand von \(\Omega \) nach einem Zyklus solcher Biegung mit erweiterten periodischen Randbedingungen. Die resultierende Momentenspannung/Krümmungskurve wird in Bild 6 gezeigt, wobei die folgenden Formeln für die Rechung der Momentenspannung und Krümmung benutzt wurden:

\[K_{31} = < x_1 u_{2,1} - x_2 u_{1,1} > \quad M_{31} = < -\sigma_{11} x_2 > \]
(39)

die sich aus den Gleichungen (9) und (15) ergeben. Es ist bemerkenswert, daß lokale lineare Elastizität in der Stahlschicht und ideale Plastizität in der Matrix zu einer makroskopischen nichtlinearen kinematischen Krümmungen - Verfestigung führen. Ähnlich könnte man den antimitrischen Teil der kinematischen Verfestigung \(\mathbf{X} \) identifizieren, indem man zyklische Beanspruchungen wie in Bild 3 betrachtet.
5 Zusammenfassung und Ausblick

Es wurde eine erweiterte Homogenisierungsmethode für die Herleitung von effektiven Eigenschaften eines homogenen Cosserat-Ersatzkontinuums beschrieben, die auf einer polynornialen Entwicklung des lokalen Verschiebungsfelds basiert. Ein Nachteil der Methode ist, daß der erweiterte Typ des HEMs von vornherein angenommen wird. Von einer Homogenisierungstheorie könnte man erwarten, daß die Form der effektiven Bilanzgleichungen hergeleitet wird. Im Falle heterogener Elastizität ist die Methode direkt anwendbar, um die zusätzlichen elastischen Moduli zu ermitteln, und die Vorhersage des effektiven Modells wurde mit der Rechnung inhomogener Strukturen in Forest (1998) und Forest und Sab (1998) verglichen. Im nichtlinearen Fall wurde ein allgemeiner konstitutiver Rahmen dargestellt und es wurde empfohlen, die Materialparameter mit den Ergebnissen von homogener und nichthomogener Beanspruchung der Einheitszelle anzupassen. Der Vorteil der Methode liegt darin,
daß beliebige mehrachsige Beanspruchungen auf Ω gerechnet werden können, die sich experimentell schwer realisieren lassen. Das erleichtert die Parameteridentifikation. Eine bessere Methode wäre, die Form der effektiven nichtlinearen Stoffgleichungen analytisch herzuleiten, was allerdings vor allem bei nichthomogenen makroskopischen Feldern wahrscheinlich selten möglich ist. Deshalb wird in dieser Arbeit die Kombination von Homogenisierungsmethoden mit phänomenologischen Ansätzen für den nicht linearen Fall bevorzugen.

Literatur

Anschrift: Dr.-Ing. Samuel Forest, Centre des Matériaux / UMR 7633, Ecole des Mines de Paris / CNRS, BP 87 F-91003 Evry