webtv

Lecture

Mesurer la déformation du sel, pour l'aménagement de réservoirs en cavités salines

Lecture

Electromagnetic forming process for metallic pieces

Lecture

Amélioration de la performance des éoliennes

Lecture

Vers un stockage géologique du C02 avec impuretés

Lecture

David Ryckelynck | Entretiens de Toulouse 2015

+ Toutes les vidéos

 

Personal web page

David RYCKELYNCK

Contact details

phone : 01.60.76.31.71
fax : 01.60.76.31.50
e-mail : david.ryckelynck@mines-paristech.fr

Centre des Matériaux
MINES Paristech
CNRS UMR 7633

physical address :
63-65 rue Henri Auguste Desbruères
Corbeil-essonnes

mailing address :
BP 87
F-91003 Evry Cedex, France

 

Professor,
Head of the Ph.D program in Mechanical Engineering,
Head of CoCas Team

 

Research Topics

Computational methods in structural mechanics: model reduction of non linear systems, hyper-reduction, Incremental Proper Orthogonal Decomposition, contact, parallel computations. Multiphysic modeling of thermomechanical processes. Inverse problems. Recent scientific results (november 2011).

__________________________________________________________________________________________________________________________________

Doctoral Workshop on Model Reduction in nonlinear dynamics of fluids and structures, January 25-29 2016 at Mines ParisTech.

Registration Closed. The maximum number of attendee have been reached.

Confirmed speakers: R. Abgrall (Univerisité de Zurich), D. Amsallem (Université de Stanford), J. Bellec (Structure Computation), F. Daim (ESI group), L. Blanc (EC Lyon), J. Fehr (Stuttgart University), A. Hamdouni (Université de La Rochelle), Y. Maday (Paris VI), D. Néron (ENS Cachan), O. Thomas (ENSAM), D. Ryckelynck (MINES ParisTech), J. Salomon (Université de Paris Dauphine).

Cours doctoral soutenu par le GDR AMORE, le CSMA, Mines ParisTech, le projet FUI MECASIF, par le GTT-AUM de l'AFM et Réseau des Ecoles Doctorales en SPI (REDOC-SPI) dans le cadre des cours thématiques doctorales de mécanique.

In the framework of the MECASIF project (French Government funding FUI15), we present recent advances in model reduction for nonlinear mechanics of fluids and structures.
 
Reduced-Order models aim at reducing the computational time required to obtain solutions of Partial Differential Equations which are physically-based and parameter dependent. They reduce the computational complexity of optimization procedures, parametric analyses, or metamodel generation. 
 
Reduced-Order Models are very useful to model complex mechanical phenomena, when parametric studies are mandatory to setup convenient nonlinear constitutive equations, boundary conditions, or numerical parameters. In such situations, many open questions about physical assumptions arise and the scientist's intuition alone cannot guarantee that convenient simplified numerical approximations are chosen. Nowadays several algorithmic approach are available to reduce models. This course aim to present recent advances in the field of structural dynamics and fluid dynamics.
 
Program: 
 

 

9:00-10:30

10:45-12:15

14:00-15:30

15:45-17:15

Monday,

January 25th

 

Introduction (D. Ryckelynck)

Proper Generalized Decomposition

D. Néron

POD for parametric partial differential equations

J. Salomon, D. Amsallem

POD in fluid mechanics

A. Hamdouni

Tuesday,

January 26th

Empirical Interpolation Methods

Y. Maday

Hyper-reduction in mechanics of materials

D. Ryckelynck

Geometrical methods

A. Hamdouni

Gappy POD and GNAT methods

D. Ryckelynck, D. Amsallem

Wednesday,

January 27th

Reduced variational inequalities

J. Salomon

Recent advances in model reduction for nonlinear vibrations.

L. Blanc

Nonlinear normal modes in vibration

O. Thomas

Numerical exercices

J. Salomon

Thursday,

January 28th

Error estimation and adaptivity

D. Ryckelynck

Hyper-reduction for crash simulations

F. Daim

Model reduction in flexible multibody dynamics

J. Fehr

Web applications

J. Bellec

Friday,

January 29th

Reduced-basis interpolation

D. Ryckelynck, D. Amsallem

 Recent advances in model reduction for fluid dynamics.

R. Abgrall

 

 

 

 
Deadline for registration: December 1st 2015.
 
 
   

____________________________________________________________________________________________________________________

Download

Hyper-reduction in nonlinear mechanics of solid materials. Reduced-order models reveal common features between solutions of parametric partial differential equations (PDE). They aim to save computational time when modelling complex mechanical phenomena, as setting-up convenient nonlinear constitutive equations or boundary conditions for instance.The Garlerkin weak form of nonlinear reduced equations do not provide sufficient speed-up, mainly because the computation of the reduced-residual can’t be performed offline. Hence, this computation remains affected by the complexity of the original model. Hyper-reduction methods aim to generate reduced-order model whose complexity does not depend on the complexity of the original model by introducing a reduced integration domain (RID). This domain contains only few elements of the original mesh.We propose both an explicit hyper-reduced scheme and implicit hyper-reduced schemes applied to nonlinear mechanics of solid materials. The explicit approach aims to interpolate missing boundary conditions on the boundary of the RID. The implicit approach predicts the reduced coordinate of the displacement field by using balance conditions restricted to the RID.

 


Publications

Research papers
  • Estimation of the validity domain of hyper-reduction approximations in generalized standard elastoviscoplasticity, D. Ryckelynck, L. Gallimard, S. Jules, AMSES, (2015),
  • POD of IR thermal data to assess heat source distributions, N. Ranc, A. Blanche, D. Ryckelynck, A. Chrysochoos, Special issue, Experimental Mechanics,(2014), DOI 10.1007/s11340-014-9858-2.
  • A priori hyper-reduction method for coupled viscoelastic-viscoplastic composites, B. Miled, D. Ryckelynck, S. Cantournet, Computer & Structures, 119, (2013), p 95-103.
  • Bimodal Beremin-type model for brittle fracture of inhomogeneous ferritic steels : Theory and applications, Andrieu, A., Pineau, A., Besson, J., Ryckelynck, D., Bouaziz, O., Engineering Fracture Mechanics, 95, (2012), p 84-101.
  • Beremin model : Methodology and application to the prediction of the Euro toughness data set, Andrieu, A., Pineau, A., Besson, J., Ryckelynck, D., Bouaziz, O., Engineering Fracture Mechanics, 95, (2012), p 102-117.
  • Multidimensional a priori hyper-reduction of mechanical models involving internal variables, D. Ryckelynck, F. Vincent, S. Cantournet, Computer Methods in Applied Mechanics and Engineering, Volumes 225–228, Pages 28–43, (2012).
  • Numerical simulation of the cooling-down of high-zirconia fused-cast refractories, Petroni, L. Boussuge, M., Ryckelynck, D., Journal of the european ceramic society, Vol. 32 , Issue: 15, Special Issue: SI , (2012), p 3941-3947.
  • Reduced-order modelling for solving linear and non-linear equations,Verdon, N, Allery, C, Beghein, C, Hamdouni, A., Ryckelynck, D., International Journal for Numerical Methods in Biomedical Engineering, Volume: 27  Issue: 1  Pages: 43-58, (2011)
  • A priori reduction method for solving the two-dimensional Burger’s equations, C. Allery, A. Hamdouni, D. Ryckelynck, N. Verdon, Applied Mathematics and Computation, Volume 217, Issue 15, 1 (2011), Pages 6671-6679.
  • A robust adaptive model reduction method for damage simulations, D. Ryckelynck, D. Missoum Benziane, S. Cartel, J. Besson, Computational Materials Science, Volume 50, Issue 5, March (2011), Pages 1597-1605.
  • Toward "green" mechanical simulations in materials science: hyper-reduction of a polycrystal plasticity model, David Ryckelynck, Djamel Missoum Benziane, Andrey Musienko, and Georges Cailletaud, EJCM, Volume 19, N°4, pp. 365-388, (2010).
  • B. Sarbandi, S. Cartel, J. Besson, D. Ryckelynck, Truncated Integration for Simultaneous Simulation of Sintering Using a Separated Representation, Achives of Computational Methods in engineering , accepté.
  • D. Ryckelynck, D. M. Benziane, Multi-level a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering , en ligne (2010).
  • N. Verdon, C. Allery, A. Hamdouni, D. Ryckelynck, Reduced-Order Modelling for solving linear and non-linear equations, Communications in Numerical Methods in Engineering, en ligne (2010).
  • D. Ryckelynck, Hyper reduction of mechanical models involving internal variables, International Journal for Numerical Methods in Engineering, Volume 77, Issue 1, Pages: 75-89, (2009).
  • D. Missoum Benziane, D. Ryckelynck, F. Chinesta, A new fully coupled two-scales modelling for mechanical problems involving microstructures: the 95/5 technic, Computer Methods in Applied Mechanics and Engineering, Volume 196, Issues 21-24, Pages 2325-2337, 2007.
  • J. Yvonnet, G. Coffignal, D. Ryckelynck, Ph. Lorong et F. Chinesta. A simple error indicator for meshfree methods based on natural neighbors. Computers & Structures, Vol. 84, Issue 21, pp 1301-1312, 2006.
  • A. Ammar, D. Ryckelynck, F. Chinesta and R. Keunings, On the reduction of kinetic theory models related to finitely extensible dumbells, Journal of Non-Newtonian Fluid Mechanics, 134, pp 136-147, 2006.
  • D. Ryckelynck, F. Chinesta, E. Cueto et A. Ammar. On the ÒA PrioriÓ Model Reduction: Overview and Recent Developments. Archives of Computational Methods in Engineering, State of the Art Reviews, Special issue, Vol. 13, n¡1, pp 91-128, 2006.
  • N. Sukumar, J. Dolbow, A. Devan, J. Yvonnet, F. Chinesta, D. Ryckelynck, Ph. Lorong, I. Alfaro, M.A. Martinez, E. Cueto et M. Doblarè, Meshless Methods and Partition of Unity Finite Elements. International Journal of Forming Processes, Vol. 8 Ðn¡4, pp. 409-427, 2005.
  • J. Yvonnet, F. Chinesta, Ph. Lorong, D. Ryckelynck, The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces, International Journal of thermal sciences, 44:559-569, 2005.
  • D. Ryckelynck, L. Hermanns, F. Chinesta et E. Alarc—n, An Efficient A Priori Model Reduction for Boundary Element Models. Engineering Analysis with Boundary Elements, Volume 29, Issue 8, pp 796-801, 2005.
  • D. Ryckelynck, A priori hypereduction method : an adaptive approach, Journal of Computational Physics, Vol. 202 , N¡1 , pp 346 - 366, (2005).
  • J. Yvonnet, D. Ryckelynck, Ph. Lorong and F. Chinesta, A new extension of the natural element method for non-convex and discontinuous problems : the constrained natural element method (C-NEM), Int. J. Numer Meth. Engng, 60 :1451-1474, 2004.
  • F. Chinesta, Ph. Lorong, D. Ryckelynck, M. A. Martinez, E. Cueto, M. Doblare, G. Coffignal, M. Touratier, J. Yvonnet, Thermomecanical cutting model discretisation : eulerian or lagrangian, mesh or meshless ? , International Journal of forming processes, 7 (2) : pp. 83 Ð 98, 2004.
  • D. Ryckelynck, Réduction a priori de modèles thermomécaniques, Comptes Rendus Mécanique, Volume 330, Issue 7, Pages 499-505, 2002.
  • J-P. Pelle et D. Ryckelynck, An Efficient Adaptive Strategy to Master the Global Quality of Viscoplastic Analysis , Computers & Structures, Ed. Elsevier Science, vol. 78, N¡1-3,pp. 169-184, 2000.
Special issues
  • J. Yvonnet, Ph. Lorong, D. Ryckelynck et F. Chinesta. Simulating Dynamic Thermo-Elasto-Plasticity in Large Transformations with Adaptative Refinement in the Natural Element Method: Application to Shear Banding. International Journal of Forming Processes, IJFP/Special Issue, Material Forming Process Optimization, pp 317-345 2005.
Book chapters
  • J. Yvonnet, D. Ryckelynck, Ph. Lorong et F. Chinesta, The C-NEM for Dicontinuous Natural Element Galerkin Interpolation and Moving Interfaces. Springer, 43, 255-270, 2005.
  • J. Yvonnet, D. Ryckelynck, Ph. Lorong, F. Chinesta et G. Coffignal. Piotr Breitkopf (eds.) Nouvelles Avancées dans les Méthodes sans Maillage Basées sur les Eléments Naturels Contraints pour la Simulation des Procédés., Extensions et alternatives à la méthode des éléments finis, Collection Mécanique et Ingénierie des Matériaux, Hermes Science, pp.21-68, 2006.

Teaching

  • Deuxième cycle : Mécanique des milieux continus, Méthode des Eléments Finis.
  • Master Recherche : Réduction de modèles, Méthodes numériques.

Formation

  • HDR en mécanique et énergétique de l'université Paris VI, jury E. Alarcon, R. Billardon, F. Chinesta, R. De Borst, F. Dupret, D. Dureisseix, P. Ladevèze, D. Leguillon, E. O–ate, janvier 2006.
  • Docteur en Mécanique de l'E.N.S. de Cachan. Thèse : "Sur l'analyse des structures viscoplastiques : stratégie adaptative et contrôle de qualité", préparée au L.M.T. sous la direction de J. P. Pelle, grade obtenu avec les félicitations du jury, janvier 1998.
  • Normalien, Ecole Normale Supérieure de Cachan, 1989-1993.

CV

  • since 2013 : Professeur Mines ParisTech
  • 2013 -2007 : Maître de recherche, Ecole Nationale Supérieure des Mines de Paris, Centre des Matériaux, Evry, France.
  • 2002-2006 : Maître de conférences, Ecole Nationale Supérieure d'Arts et Métiers, Paris, France.
  • 1998-2002 : Professeur Agrégé de Mècanique, Ecole Nationale Supérieure d'Arts et Métiers, Paris, France.
  • 1997-1998 : Attaché Temporaire d'Enseignement et de Recherche, IUT d'Evry, France.
  • 1993-1994 : Chercheur scientifique du contingent à l'ONERA, Châtillon, France.

 

-> publication list

 

Personal web page - MINES ParisTech
Partager
Plan du site
Mentions légales efil.fr © 2014 MINES ParisTech