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Abstract

The micromorphic approach to crystal plasticity represents an extension of the
micropolar (Cosserat) framework, which is presented in a separate chapter.
Cosserat crystal plasticity is contained as a special constrained case in the
same way as the Cosserat theory is a special restricted case of Eringen’s
micromorphic model, as explained also in a separate chapter. The micromorphic
theory is presented along the lines of Aslan et al. (Int J Eng Sci 49:1311–
1325, 2011) and Forest et al. (Micromorphic approach to crystal plasticity and
phase transformation. In: Schroeder J, Hackl K (eds) Plasticity and beyond.
CISM international centre for mechanical sciences, courses and lectures, vol
550, Springer, pp 131–198, 2014) and compared to the micropolar model in
some applications. These extensions of conventional crystal plasticity aim at
incorporating the dislocation density tensor introduced by Kröner (Initial studies
of a plasticity theory based upon statistical mechanics. In: Kanninen M, Adler
W, Rosenfield A, Jaffee R (eds) Inelastic behaviour of solids. McGraw-Hill,
pp 137–147, 1969). and Cermelli and Gurtin (J Mech Phys Solids 49:1539–
1568, 2001) into the constitutive framework. The concept of dislocation density
tensor is equivalent to that of the so-called geometrically necessary dislocations
(GND) introduced by Ashby (The deformation of plastically non-homogeneous
alloys. In: Kelly A, Nicholson R (eds) Strengthening methods in crystals. Applied
Science Publishers, London, pp 137–192, 1971). The applications presented in
this chapter deal with pile-up formation in laminate microstructures and strain
localization phenomena in polycrystals.

Keywords
Micromorphic medium · Crystal plasticity · Dislocation density tensor ·
Geometrically necessary dislocations · Strain gradient plasticity · Size effect

Introduction

The micromorphic approach to crystal plasticity represents an extension of the
micropolar (Cosserat) framework which is presented in a separate chapter. Cosserat
crystal plasticity is contained as a special constrained case in the same way as the
Cosserat theory is a special restricted case of Eringen’s micromorphic model, as
explained also in a separate chapter. The micromorphic theory is presented along the
lines of Aslan et al. (2011) and Forest et al. (2014) and compared to the micropolar
model in some applications. These extensions of conventional crystal plasticity
aim at incorporating the dislocation density tensor introduced by Kröner (1969)
and Cermelli and Gurtin (2001) into the constitutive framework. The concept of
dislocation density tensor is equivalent to that of so-called geometrically necessary
dislocations (GND) introduced by Ashby (1971).

The links between the micromorphic continuum and the plasticity of crystalline
materials have been recognized very early by Claus and Eringen (1969) and Eringen
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and Claus (1970). Lattice directions in a single crystal can be regarded as directors
that rotate and deform as they do in a micromorphic continuum. The fact that
lattice directions can be rotated and stretched in a different way than material
lines connecting individual atoms, especially in the presence of static or moving
dislocations, illustrates the independence between directors and material lines in
a micromorphic continuum, even though their deformation can be related at the
constitutive level.

The objective of the present chapter is to formulate a finite deformation
micromorphic extension of conventional crystal plasticity to account for GND
effects in single crystals. It also provides analytical predictions of size effects on
the yield strength and kinematic hardening of laminate microstructures made of
an elastic layer and an elastic–plastic single-crystal layer undergoing single slip.
The theory is called the microcurl model because the evaluation of the curl of the
microdeformation, instead of its full gradient, is sufficient to account for the effect
of the dislocation density tensor.

The models proposed in this section for single crystals fall in the class of
anisotropic elastoviscoplastic micromorphic media for which constitutive frame-
works at finite deformations have been proposed in Forest and Sievert (2003), Lee
and Chen (2003), Grammenoudis and Tsakmakis (2009), Sansour et al. (2010),
and Regueiro 2010; see the corresponding chapter in this handbook. In fact,
the micromorphic approach can be applied not only to the total deformation
by introducing the microdeformation field but can also be restricted to plastic
deformation, for specific application to size effects in plasticity, or to damage
variables for application to regularized simulation of crack propagation, as proposed
in Forest (2009, 2016) and Hirschberger and Steinmann (2009).

The outline of this chapter is as follows. The crystal plasticity model formulated
within Eringen’s micromorphic framework is presented at finite deformation in
section “The Microcurl Model at Finite Deformation,” together with its lineariza-
tion. Size effects predicted by the model are illustrated in section “Size Effects
in a Two-Phase Single-Crystal Laminate.” Some constitutive laws involving the
dislocation density tensor are discussed in section “Free Energy Potentials for
Micromorphic Crystal Plasticity” with an application to cyclic plasticity in single
crystals. Finally, the model is used to predict the response of polycrystalline metals
and alloys in section “Grain Size Effects in Polycrystals.”

The Microcurl Model at Finite Deformation

Model Formulation

Balance Equations
The degrees of freedom of the proposed theory are the displacement vector u and
the microdeformation variable b�p , a generally nonsymmetric second-rank tensor.
The fieldb�p .X/ is generally not compatible, meaning that it does not derive from a
vector field. The exponent p indicates, in advance, that this variable will eventually
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be constitutively related to plastic deformation occurring at the material point. In
particular, the microdeformation b�p is treated as an invariant quantity with respect
to rigid body motion. The polar decomposition of the microdeformation contains
the polar rotation R used in the micropolar crystal plasticity theory and a symmetric
microstretch tensor. As a result, when this microstretch tensor is close to the identity
tensor, the micromorphic model reduces to the micropolar one.

A first gradient theory is considered with respect to the degrees of freedom.
However, the influence of the microdeformation gradient is limited to its curl part
because of the intended relation to the dislocation density tensor associated with
the curl of plastic distortion. The following sets of degrees of freedom and of their
gradients are therefore defined:

DOF D
˚

u; b�
p�
; GRAD D

˚

F WD 1C u˝r0; K WD Curl b�p
�

(1)

The following definition of the curl operator is adopted:

Curl b�p WD
@b�

p

@Xk
� ek; Kij WD 2jkl

@b�
p

ik

@Xl
(2)

where 2ijk is the permutation tensor.
The method of virtual power is used to derive the balance and boundary

conditions, following Germain (1973). For that purpose, the power density of
internal forces is defined as a linear form with respect to the velocity fields and
their Eulerian gradients:

p.i/ D � W . Pu˝r/C s W Pb�
p
CM W curl Pb¦

p
; 8x 2 V (3)

Here, the conjugate quantities are the Cauchy stress tensor � , which is symmetric
for objectivity reasons; the microstress tensor, s; and the generalized couple-stress
tensor M. The curl of the microdeformation rate is defined as:

curl Pb�
p
WD 2jkl

@ Pb�
p

ik

@xl
ei ˝ ej D PK F�1 (4)

The form of the power density of internal forces dictates the form of the power
density of contact forces:

p.c/ D t � PuCm W Pb¦
p
; 8x 2 @V (5)

where t is the usual simple traction vector and m is the double-traction tensor. The
principle of virtual power is stated in the static case and in the absence of volume
forces for the sake of brevity:

�

Z

D

p.i/ dV C

Z

@D

p.c/ dS D 0 (6)
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for all virtual fields Pu; Pb�
p

and any subdomain D � V. By application of the Gauss
divergence theorem, assuming sufficient regularity of the fields, this statement
expands into:

R

V

@�ij
@xj
Pui dV C

R

V

�

2kjl
@Mik

@xl
� sij

�

P
b�
p

ij dV

C
R

@V

�

ti � �ij nj
�

Pui dS C
R

@V

�

mik � 2jkl Mij nl
�

P
b�
p

ik dS D 0; 8Pui ;8
P
b�
p

ij

which leads to the two-field equations of balance of momentum and generalized
balance of moment of momentum:

div � D 0; curl MC s D 0; 8x 2 V (7)

and two boundary conditions:

t D � � n; m DM� 2 �n; 8x 2 @V (8)

the index representation of the latter relation being mij D Mik2kjlnl. These balance
equations can be compared to the corresponding ones in the chapter dedicated to the
micropolar theory.

Constitutive Equations
The deformation gradient is decomposed into elastic and plastic parts in the form,

F D Fe Fp (9)

The isoclinic intermediate configuration is defined in a unique way by keeping
the crystal orientation unchanged from the initial to the intermediate configuration
following Mandel (1973). The plastic distortion Fp is invariant with respect to rigid
body motions that are carried by Fe. The current mass density is �, whereas the
mass density of the material element in the intermediate configuration is Q�, such
that Q�=� D Je WD det .Fe/. The elastic strain is defined as:

QEe WD
1

2

�

FeT Fe � 1
�

(10)

The microdeformation is linked to the plastic deformation via the introduction of
a relative deformation measure, defined as:

ep WD Fp�1 b�p � 1 (11)

This tensor ep measures the departure of the microdeformation from the plastic
deformation. The state variables are assumed to be the elastic strain, the relative
deformation, the curl of microdeformation, and some internal variables, ˛:
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STATE WD
n

QEe; ep; K; ˛
o

(12)

The specific Helmholtz free energy density,  , is assumed to be a function of
this set of state variables. In particular, in this simple version of the model, the curl
of microdeformation is assumed to contribute entirely to the stored energy. In more
sophisticated models, as proposed in Forest and Sievert (2003, 2006), Forest (2009),
and Gurtin and Anand (2009), the relative deformation, the microdeformation, and
its gradient can be split into elastic and plastic parts.

When the internal constraint ep � 0 is enforced, the plastic microdeformation
coincides with the plastic deformation so that the curl of the plastic microdeforma-
tion is directly related to the dislocation density tensor previously defined by:

K WD Curl b�p � Curl Fp D JAF�T (13)

where A is the dislocation density tensor defined as the curl of the inverse elastic
deformation.

The micromorphic model then reduces to strain gradient plasticity according to
Gurtin (2002).

The dissipation rate density is the difference:

�intr WD p.i/ � � P � 0 (14)

which must be positive according to the second principle of thermodynamics. When
the previous strain measures are introduced, the power density of internal forces
takes the following form:

p.i/ D � W PFeFe�1C � W
�

Fe PFp Fp�1 Fe�1
�

C s W
�

Fp PepC PFp ep
�

CM W PK F�1

D
�

Q�
…e W PQE

e

C
�

Q�
…M W PFp Fp�1 C s W

�

Fp Pep C PFp ep
�

CM W PK F�1

(15)

where…e is the second Piola–Kirchhoff stress tensor with respect to the intermedi-
ate configuration and…M is the Mandel stress tensor:

…e WD Je Fe�1 � Fe�T; …M WD Je FeT � Fe�T D FeT Fe …e (16)

On the other hand,

� P D �
@ 

@ QEe
W PQE

e

C �
@ 

@ep
W Pep C �

@ 

@K
W PKC �

@ 

@˛
P̨ (17)

We compute:
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JeD D
�

…e � Q� @ 
@QEe

�

W PQE
e

C
�

Je FpT s � Q� @ 
@ep

�

W Pep

C
�

JeM F�T � Q� @ 
@K

�

W PK

C
�

…M C Jes b�
pT
�

W PFp Fp�1 � Q� @ 
@˛
P̨ � 0

(18)

Assuming that the processes associated with PQE
e

; Pep and PK are nondissipative,
the state laws are obtained:

…e D Q�
@ 

@ QEe
; s D J�1e Fp�T Q�

@ 

@ep
; M D J�1e Q�

@ 

@K
FT (19)

The residual dissipation rate is:

JeD D
�

…M C Jes b¦
pT
�

W PFp Fp�1 �R P̨ � 0; with R WD Q�
@ 

@˛
(20)

At this stage, a dissipation potential that depends on stress measures, �(S, R), is
introduced in order to formulate the evolution equations for plastic flow and internal
variables:

PFp Fp�1 D
@�

@S ; with S WD …M C Jesb¦
pT (21)

P̨ D �
@�

@R
(22)

where R is the thermodynamic force associated with the internal variable ˛ and S is
the effective stress conjugate to plastic strain rate, the driving force for plastic flow.

In the case of crystal plasticity, a generalized Schmid law is adopted for each slip
system s in the form:

f s
�

S; � sc
�

D jS W Psj � �sc � 0; with Ps D l s ˝ ns (23)

for activation of slip system s with slip direction, ls, and normal to the slip plane, ns.
We call Ps the orientation tensor. The critical resolved shear stress is �sc which may
be a function of R in the presence of isotropic hardening. The kinematics of plastic
slip follows from the choice of a dissipation potential, �(f s), that depends on the
stress variables through the yield function itself, fs:

PFp Fp�1 D
N
X

sD1

@�

@f s

@f s

@S D
N
X

sD1

P”s Ps; with P”s D
@�

@f s
sign .S W Ps/ (24)

A possible viscoplastic potential is then:
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�.f s/ D
K

nC 1
<
f s

K
>nC1 (25)

where K and n are viscosity parameters associated with viscoplastic slip, and the
brackets stand for < � > D Max(0, �). The generalized resolved shear stress can be
decomposed into two contributions:

S W Ps D �s � xs; with �s D …M W Ps and xs D �sb¦pT W Ps (26)

The usual resolved shear stress is � s, whereas xs can be interpreted as an internal
stress or back stress leading to kinematic hardening. The fact that the introduction
of the effect of the dislocation density tensor or, more generally, of gradient of
plastic strain tensor leads to the existence of internal stresses induced by higher-
order stresses has already been noticed by Steinmann (1996); see also Forest (2008).
The back stress component is induced by the microstress s or, equivalently, by the
curl of the generalized couple-stress tensor, M, via the balance Eq. (7).

Geometrically Linearized Model

When deformations and rotations remain sufficiently small, the previous equations
can be linearized as follows:

F D 1CH ' 1CHe CHp; He D "e C!e; Hp D "p C!p (27)

where "e and !e (resp. "p, !p) are the symmetric and skew-symmetric parts of
Fe – 1 (resp. Fp – 1). When microdeformation is small, the relative deformation is
linearized as:

ep D .1CHp/�1 .1C ¦p/ � 1 ' ¦p �Hp; with ¦p Db¦p � 1 (28)

When linearized, the state laws (19) become:

� D �
@ 

@"e
; s D �

@ 

@ep
; M D �

@ 

@K
(29)

The evolution equations read then:

P"p D
@�

@ .� C s/
; P̨ D �

@�

@R
(30)

The most simple case of a quadratic free energy potential is first considered:

� ."e; ep;K/ D
1

2
"e W C W "e C

1

2
H�ep W ep C

1

2
AK W K (31)
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The usual four-rank tensor of elastic moduli is denoted by C. The higher-order
moduli have been limited to only two additional parameters: H¦ (unit MPa) and
A (unit MPa.mm2). Their essential impact on the prediction of size effects will be
analyzed in the next section. It follows that:

� D C W "e; s D H�ep; M D AK (32)

Large values of H¦ ensure that ep remains small so that b¦p remains close to Hp

and K is close to the dislocation density tensor. The yield condition for each slip
system becomes:

f s D j�s � xsj � �sc (33)

with

xs D �s W Ps D .curl M/ W Ps D A .curl curl ¦p/ W Ps (34)

Comparison Between Micropolar and Micromorphic Crystal
Plasticity

Experimental techniques like Electron Back-Scatter Diffraction (EBSD) provide
the field of lattice orientation and, consequently, of lattice rotation Re during
deformation. The rotation Re appears in the polar decomposition of the elastic
deformation Fe D ReUe, where Ue is the lattice stretch tensor. Since

˛ D � curl Fe�1 D � curl
�

Ue�1 � ReT
�

(35)

the hypothesis of small elastic strain implies

˛ ' � curl ReT (36)

This approximation also requires that the gradient of elastic strain is also small,
which is not ensured even if the elastic strain is small. If, in addition, elastic rotations
are small, we have:

˛ ' � curl .1 �!e/ D curl !e (37)

The small rotation axial vector is defined as:

�e
! D �

1

2
2
'
W !e; !e D �2

�
�
�e
! (38)

or, in matrix notations:
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Œ!e� D

2

4

0 !e12 �!
e
31

� !e12 0 !e23
!e31 �!

e
23 0

3

5 D

2

6

4

0 �
�e
!3

�e
!2

�e
!3 0 �

�e
!1

�
�e
!2

�e
!1 0

3

7

5 (39)

The gradient of the lattice rotation field delivers the lattice curvature tensor. In
the small deformation context, the gradient of the rotation tensor is represented by
the gradient of the axial vector:

� WD
�e
! (40)

One can establish a direct link between curl !e and the gradient of the axial
vector associated with !. For that purpose, the matrix form of curl !e is derived
according to:

Œcurl !e� D

2

6

4

!e12;3 C !
e
31;2 �!e31;1 �!e12;1

� !e23;2 !e12;3 C !
e
23;1 �!e12;2

� !e23;3 �!e31;3 !e23;1 C !
e
31;2

3

7

5 (41)

or equivalently:

Œcurl !e� D

2

6

6

4

�e
�!3;3 �

�e
!2;2

�e
!2;1

�
!3;1

�e
!1;2

�e
�!3;2 �

�e
!1;1

�e

!3;2
�e
!1;3

�e
!2;3

�e
�!1;1 �

�e
!2;2

3

7

7

5 (42)

from which it becomes apparent that:

˛ D �T � .trace �/ 1; � D ˛T �
1

2
.trace ˛/ 1 (43)

This is a remarkable relation linking, with the context of small elastic strains
(and in fact of small gradients of elastic strain) and rotations, the dislocation density
tensor to lattice curvature. It is known as Nye’s formula (Nye 1953).

As a conclusion, it appears that the Cosserat crystal plasticity model only
considers the lattice curvature part contained in the full dislocation tensor. This
seems to be a reasonable assumption. However, some significant differences can
be found in the predictions of Cosserat vs. full micromorphic theory, as discussed
in the reference Cordero et al. (2010a).
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Fig. 1 Single slip in a periodic two-phase single-crystal laminate under simple shear: the gray
phase (h) displays a purely linear elastic behavior, whereas the inelastic deformation of the white
elasto-plastic phase (s) is controlled by a single-slip system (n, l)

Size Effects in a Two-Phase Single-Crystal Laminate

A periodic two-phase single-crystal laminate under simple shear, whose unit cell
is shown in Fig. 1, is considered, following Forest and Sedláček (2003a), Forest
(2008), and Cordero et al. (2010a). This microstructure is composed of a hard
elastic phase (h) and a soft elasto-plastic phase (s) where one slip system with slip
direction normal to the interface between (h) and (s) is chosen. A mean simple glide
” is applied in the crystal slip direction l of the phase (s). The displacement and
microdeformation fields take the form:

u1 D ”x2; u2 .x1/ ; u3 D 0; ¦
p
12 .x1/ ; ¦

p
21 .x1/ (44)

within the context of small deformation theory. It follows that:

ŒH� D

2

4

0 ” 0

u2;1 0 0
0 0 0

3

5

ŒHp� D

2

4

0 ” 0

0 0 0

0 0 0

3

5 ŒHe� D

2

4

0 ” � ” 0

u2;1 0 0

0 0 0

3

5

Œ¦p� D

2

4

0 ¦
p
12 .x1/ 0

¦
p
21 .x1/ 0 0

0 0 0

3

5 Œcurl ¦p� D

2

4

0 0 �¦
p
12;1

0 0 0

0 0 0

3

5

The resulting stress tensors are:
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Œ�� D 	

2

4

0 ” � ” C u2;1 0
” � ” C u2;1 0 0

0 0 0

3

5

Œs� D �H¦

2

4

0 ” � ¦
p
12 0

� ¦
p
21 0 0

0 0 0

3

5

ŒM� D

2

4

0 0 �A¦
p
12;1

0 0 0

0 0 0

3

5 Œcurl M� D

2

4

0 �A¦
p
12;11 0

0 0 0

0 0 0

3

5

These forms of matrices are valid for both phases, except that ” � 0 in the hard
elastic phase. Each phase possesses its own material parameters, H¦ and A, the shear
modulus,	, being assumed for simplicity to be identical in both phases. The balance
equation, sD �curl M, gives �p21 D 0 and the plastic slip:

” D ¦
p
12 �

A

H�

�
p
12;11: (45)

In the soft phase, the plasticity criterion stipulates that:

�12 C s12 D �c CH”cum; (46)

where H is a linear hardening modulus considered in this phase and ”cum is the
accumulated plastic slip as P”cum D jP”j. The following analytical resolution is done
for the first loading branch, under monotonic loading. The slip direction, l, has been
chosen such that ” > 0 for this first loading branch so that we have: ”cum D ”.
Considering Eqs. (45) and (46), we obtain the second-order differential equation for
the microdeformation variable in the soft phase, ¦ps12 ,

1

!s2
¦
ps
12;11 � ¦

ps
12 D

�c � �12

H
; with !s D

v

u

u

t

Hs
�H

As
�

Hs
� CH

� : (47)

where 1/!s is the characteristic length of the soft phase for this boundary value
problem. The force stress balance equation requires �12 to be uniform. It follows
that the nonhomogeneous part of the differential equation is constant and then the
hyperbolic profile of ¦ps12 takes the form:

¦
ps
12 D C

s cosh .!sx/CD; (48)

where Cs and D are constants to be determined. Symmetry conditions
�

¦
ps
12 .�s=2/ D ¦

ps
12 .s=2/

�

have been taken into account.
In the elastic phase, where the plastic slip vanishes, a hyperbolic profile of the

microdeformation variable, ¦ph12 , is also obtained:
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¦
ph
12 D C

h cosh

�

!h
�

x ˙
s C h

2

��

; with !h D

s

Hh
¦

Ah
; (49)

where, again, Ch is a constant to be determined, and symmetry conditions have been
taken into account. It is remarkable that the plastic microvariable, ¦ph12 , does not
vanish in the elastic phase, close to the interfaces, although no plastic deformation
takes place. This is due to the transmission of double traction. Such a transmission
has been shown in Cordero et al. (2010a) to be essential for size effects to occur.
This point will be discussed in section “Size Effects in a Two-Phase Single-Crystal
Laminate.” The linear constitutive equation for the double-stress tensor in (32)
can be interpreted, for the elastic phase, as nonlocal elasticity. That is why the
corresponding characteristic length, 1/!h, will be kept of the order of nanometers in
the presented simulation.

The coefficients Cs, D, and Ch can be identified using the interface and
periodicity conditions:

• Continuity of ¦p12 at x D˙s/2:

C s cosh
�

!s
s

2

�

CD D Ch cosh

�

!h
h

2

�

: (50)

• Continuity of the double traction, as given in Eq. (8), m12 D �M13 at x D˙s/2:

As!sC s sinh
�

!s
s

2

�

D �Ah!hCh sinh

�

!h
h

2

�

: (51)

• Periodicity of displacement component u2. We have the constant stress compo-
nent:

�12 D 	 .” � ” C u2;1/ (52)

whose value is obtained from the plasticity criterion in the soft phase (Eq. 46):

�12 D �c CH”cum � A
s¦

ps
12;11: (53)

Still considering the first loading branch for which ”cum D ”, it follows that:

us2;1 D
�12

	
� ” C ” D

�c

	
� ” C

As!s2C s

H
cosh .!sx/C

H C 	

	
D (54)

in the soft phase and:
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a b

Fig. 2 Profiles of (a) plastic microdeformation �p12 and (b) double traction m12 in the two-phase
microstructure with the microcurl model at 0.2% overall plastic strain obtained with the set of
material parameters given in Table 1 and (1) with no mismatch between the moduli of the two
phases, Ah D As D 5.10�5 MPa.mm2; (2) with a stronger mismatch, Ah D 5.10�5 MPa.mm2

and As D 1.10�3 MPa.mm2; and (3) Ah D 5.10�5 MPa.mm2 and As D 5.10�2 MPa.mm2. The
associated intrinsic length scales, 1/!s, are, respectively, 100 nm, 449 nm, and 3.2 
m. In all three
cases, the fraction of soft phase fsD 0.7 and the microstructure size is fixed, lD 1 
m. The vertical
lines indicate the position of interfaces

uh2;1 D
�12

	
� ” D

�c

	
� ” C

H

	
D (55)

in the hard phase. The average on the whole structure,

Z .sCh/=2

�.sCh/=2

u2;1dx D 0; (56)

must vanish for periodicity reasons and gives

�

�c

	
� ”

�

.s C h/C
2As!sC s

H
sinh

�

!s
s

2

�

C
H .s C h/C 	s

	
D D 0 (57)

The resolution of Eqs. (50), (51), and (57) gives:

C s D

�

�c

	
� ”

�

"

As!s sinh
�

!s s
2

�

s C h

 

H .s C h/C 	s

	

 

coth
�

!s s
2

�

As!s
C

coth
�

!h h
2

�

Ah!h

!

�
2

H

!#�1

(58)
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Table 1 Set of material parameters used in the simulations. The intrinsic length scales, defined as
1/!h,s, induced by these parameters is of the order of 10 nm for the elastic phase (h) and 500 nm
for the plastic phase (s)

	[MPa] � c[MPa] H[MPa] H¦[MPa] A[MPa.mm2]

Phase (s) 35,000 40 5000 500,000 1.10�3

Phase (h) 35,000 – – 500,000 5.10�5

D D �As!sC s sinh
�

!s
s

2

�

 

coth
�

!s s
2

�

As!s
C

coth
�

!h h
2

�

Ah!h

!

(59)

Ch D �C s
As!s sinh

�

!s s
2

�

Ah!h sinh
�

!h h
2

� : (60)

Figure 2 shows the profiles of plastic microdeformation and double traction in
the two-phase laminate for different sets of material parameters and for a fraction of
soft phase (s), fs D 0.7. These profiles clearly show the continuity of ¦p12 and m12 at
the interfaces. The different shapes presented are obtained for various values of the
modulus As, the other material parameters being fixed and given in Table 1. Varying
As modifies the mismatch with respect to the modulus Ah of the phase (h). Without
mismatch the profile of ¦p12 is smooth at interfaces, while stronger mismatches lead
to sharper transitions between the phases. Varying As also changes the intrinsic
length scale 1/!s of the phase (s). When the intrinsic length scale is small compared
to the size of the microstructure, the microdeformation gradient can develop inside
the phase (s) which leads to a rounded profile of the plastic microdeformation ¦p12
and to a double traction m12 localized at the interfaces. When the intrinsic length
scale increases, the value of the double traction also increases at the interfaces (or
equivalently, when decreasing the microstructure length scale, lD sC h, for a fixed
intrinsic length scale). When the intrinsic length scale becomes of the order of the
size of the microstructure or even larger, the model starts to saturate so that ¦p12
becomes quasihomogeneous (flat profile) and the double traction is not localized
anymore (linear profile). From Eq. (53) we derive the expression of the macroscopic
stress tensor component,†12, defined as the mean value of the stress component �12

over the microstructure size, lD (sC h):

X

12
D h�12i D

1

l

Z 1
2

� 12

�12dx D �c C
H

fs
h”cumi �

As

fs

˝

�
ps
12;11

˛

; (61)

where brackets < > denote the average values over the microstructure unit cell. We
obtain the mean plastic slip for the first loading branch from Eq. (45):
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h”i D

*

¦
ps
12 �

As

Hs
�

¦
ps
12;11

+

D
2As!sC s sinh

�

!s
fsl

2

�

Hl
C fsD (62)

where fs is the fraction of soft phase. From this we obtain alternative expressions of
Cs and D as functions of h”i,

C s D �h”i

2

4As!s sinh

�

!s
fsl

2

�

0

@fs

0

@

coth
�

!s
fsl

2

�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A �
2

Hl

1

A

3

5

�1

(63)

D D h”i

2

6

4fs �
2

Hl

0

@

coth
�

!s
fsl

2

�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A

�1
3

7

5

�1

(64)

which contain contributions from both the back stress and the isotropic hardening.
The macroscopic stress takes the form:

X

12
D �c CHD: (65)

The hardening produced by the model is a combination of the kinematic
hardening arising from the higher-order back stress component and the linear
isotropic hardening introduced in (46). Its modulus, Htot, is size-dependent and is
obtained using Eqs. (64) and (65):

Htot D H

2

6

4fs �
2

Hl

0

@

coth
�

!s
fsl

2

�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A

�1
3

7

5

�1

(66)

One cycle of deformation ” has been considered to illustrate the kinematic
hardening effects. In the absence of gradient effects, only isotropic hardening is
visible. The microcurl model leads to an additional kinematic hardening component.
When the size of the elasto-plastic phase (s) becomes large compared to the intrinsic
length scale 1/!s, strain gradient effect is small, and the kinematic hardening arising
from the microcurl model tends to vanish. Then the model reduces to conventional
crystal plasticity theory, and the limit of the 0.2% macroscopic flow stress is:

lim
l!1

X

12j0:2
D �c C

H

fs
h”cumi : (67)
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In contrast, the maximum extra stress, �†, predicted by the model at small
microstructure sizes can be computed as:

�† D lim
l!0

X

12
.h”i/ � lim

l!1

X

12j0:2
D
1 � fs

fs
H� h”i : (68)

Figure 3 presents the predicted evolution of the macroscopic flow stress †12j0.2

at 0.2% plastic strain (obtained by setting h”i D 0.002) as a function of the
microstructure length scale l in a log–log diagram. This evolution is plotted using
the material parameters given in Table 1 and for various values of the coupling
modulus, Hs

¦ D Hh
¦ D H¦. The four lower curves are obtained for finite values of

the modulus H¦; they exhibit a tanh shape with saturation for large (l > 10�2 mm)
and small (l < 10�5 mm) values of l. These saturations can be characterized by
the limit given in Eq. (67) and the maximum extra stress, �†, given in Eq. (68),
respectively. A transition domain with strong size dependence is observed between
these two plateaus. The limits and the maximum extra stress, the position of the
transition zone, and the scaling law exponent in the size-dependent domain (slope
in the log–log diagram) are directly related to the material parameters used in the
model. In fact, the position of the size-dependent domain is controlled by the moduli
Ah,s (not illustrated here), while the maximum extra stress and the scaling law
exponent are both controlled by the modulus H¦, both increasing for higher values
of H¦ as suggested by Fig. 3.

When H¦ is very small, we can deduce from Eq. (68) that �† vanishes, and
consequently the scaling law exponent will tend to 0. The upper curve is obtained
for H¦ ! 1; it no longer exhibits a tanh shape as no saturation occurs for small
values of l, the limit �† !1 follows. This limit case will be described in the
next subsection; it will be shown that in that case, a scaling law exponent of �2 is
reached. Finally, the microcurl model can produce scaling law exponents ranging
from 0 to �2.

Strain Gradient Plasticity as a Limit Case

In the proposed microcurl model, the modulus H¦ introduces a coupling between
micro and macro variables. A high value of H¦ forces the plastic microdeformation
¦p to remain as close as possible to the macroplastic deformation Hp. Consequently,
it enforces the condition that K coincides with the dislocation density tensor. In
this case, the microcurl model degenerates into the strain gradient plasticity model
by Gurtin (2002). When applied to the laminate microstructure, the strain gradient
plasticity model leads to the indeterminacy of the double-traction vector at the
interfaces, due to the fact that no strain gradient effect occurs in the elastic phase; see
Cordero et al. (2010a). The microcurl model can then be used to derive the missing
interface condition to be applied at the interface, by means of a limit process in the
previous solution of the boundary value problem.
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The limit H�!1 of the microcurl model can be used to determine the value of
the double traction to be imposed at the interface, as follows:

lim
H¦!1

m12 .s=2/ D lim
H¦!1

As¦
ps
12;1 .s=2/

D lim
H¦!1

As!s sinh

�

!s
fsl

2

�

C s

D lim
H¦!1

h”i

2

4

2

Hl
�fs

0

@

coth
�

!s
fsl

2

�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A

3

5

�1

Since H� ! 1, 1/!h ! 0 and coth (!h h/2) ! 1. Moreover, !s1 WD !s !
p

H=As .
Consequently,

lim
H¦!1

m12 .s=2/ D h”i

2

4

2

Hl
� fs

coth
�

!s1
fsl

2

�

As!s1

3

5

�1

(69)

Accordingly, the double traction is found to depend on the mean plastic slip.
The characteristic length in the soft phase for the strain gradient plasticity model
is found to be related to the ratio between the hardening modulus and the higher-
order modulus, As. The limiting process can also be used to predict the response of
the strain gradient plasticity model in the size effect zone. For that purpose, let us
consider the limit of †12j0.2, when H¦ goes to infinity. Indeed, when H¦ tends to
infinity, the expression of D in Eq. (64) can be simplified. We consider sizes of the
microstructures in the size effect zone, i.e., intermediate values of l. Since H¦ is very
high, the term tanh (!h(1 – fs)l/2) tends to 1. Considering that l is small enough, the
term l (tanh (!s fs l/2)) can be approximated by its Taylor expansion at the order 2,
which leads to D of the form:

D �
al C b

cl2 C dl C e
(70)

where

a D
h”ifs

2
p

H¦

; b D h”ifsA
h

�

1C
H

H¦

�

(71)

c D �
f 3
s H
p
Ah

12
; d D

f 2
s H

2
p

H¦

; e D �
fs
p
AhH

H¦

(72)

The terms a, d, and e tend to 0 when H¦!1, so that:
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D �
12As h”i

f 3
s Hl

2
(73)

and for the macroscopic stress:

†12 � �c C
12As h”i

f 3
s l

2
(74)

This expression indicates a l�2 scaling law for the strain gradient plasticity
model. This scaling law differs from the Hall–Petch relation, l–1/2, typical for grain
size effects, and from the Orowan relation, l�1, valid for precipitate size effects.

On the right Fig. 3 shows a comparison between the micropolar and micromor-
phic responses in the case of the two-phase laminate under shear. A saturation of
the stress level is found for increasing values of the penalty modulus H¦ in the
micropolar model at small scales. In contrast, the micromorphic response converges
toward that of the strain gradient plasticity model and displays no limit at small
scales. This is a fundamental difference between the lattice curvature-based and the
dislocation density tensor-based models; see Cordero et al. (2010a).

Free Energy Potentials for Micromorphic Crystal Plasticity

The previous example showing that a simple quadratic potential with respect to the
dislocation density tensor does not provide the satisfactory scaling law for the plastic
behavior of the channel is an incentive for developing more physical constitutive
laws for strain gradient plasticity. Such an attempt is presented in this section along
the lines of Wulfinghoff et al. (2015).

Physically, the introduction of additional energy density terms may be motivated
by the incomplete nature of the continuum theory. Clearly, the continuum descrip-
tion does not contain the full information on the discrete dislocation microstructure.
In particular, single dislocations are not resolved. Instead, the continuum representa-
tion may be interpreted as a smoothed version of the real system, where information
is lost deliberately. There is no reason to assume that the total elastic energy of
the continuum representation coincides with the elastic energy of the real system
including discrete dislocations. This is due to the loss of information as a result
of the smoothing procedure (Mesarovic et al. 2010). Additional energy terms in
gradient plasticity may therefore be interpreted as an attempt to partially compensate
the error in the continuum elastic energy. This is done by taking into account
available kinematical information on the dislocation microstructure as additional
argument of the energy.

The optimal form of the energy is subject of current research. Most applications
are based on a pragmatic quadratic approach (e.g., Cordero et al. 2012; Reddy et al.
2012; Wulfinghoff and Böhlke 2012; Miehe et al. 2014; Wulfinghoff et al. 2013a, b;
Mesarovic et al. 2015).
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Instead, a more reasonable approach seems to be based on a variable internal
length scale as a function of the dislocation state (Groma et al. 2003; Mesarovic
et al. 2010). The quadratic form was recently shown to provide physically unrealistic
scaling in the size-dependent response of laminate microstructures under shear
(Cordero et al. 2010b; Forest and Guéninchault 2013). Since quadratic forms are
unusual in the classical dislocation theory, alternative free energy potentials were
proposed in the past 10 years. Rank-one energies that are linear with respect to the
GND densities have been shown to lead to a size-dependent yield stress in certain
situations. Additionally motivated by line tension (and more elaborate) arguments,
they are used by several authors (Ortiz and Repetto 1999; Conti and Ortiz 2005;
Ohno and Okumura 2007; Kametani et al. 2012; Hurtado and Ortiz 2013).

Asymptotic methods can be used to derive alternative effective potential for dis-
tributions of edge dislocations. The asymptotic derivation of a logarithmic potential
by De Luca et al. (2012) accounts for line tension effects at the macroscopic scale.
Systematic derivations of back stress distributions were derived in Geers et al.
(2013) by means of asymptotic methods.

The choice of a logarithmic energy is inspired by the statistical theory of dislo-
cations of Groma et al. (2003, 2007) and Berdichevsky (2006a,b). Here, the internal
length scale of the back stress is determined by the dislocation microstructure
(see also Svendsen and Bargmann 2010; Forest and Guéninchault 2013). In the
latter reference, the rank-one and logarithmic formulations were applied to strain
gradient plasticity theories involving the full dislocation density tensor instead of
the individual GND densities.

Formulation of Two Free Energy Potentials

It is assumed that the volumetric stored energy density has the form:

� D W D We CWg CWh; (75)

with We D (" � "p) : C : (" � "p)/2. The expressions Wh and Wg are assumed to be
functions of internal (hardening) variables ˛ and the dislocation density tensor A,
respectively.

Size-independent isotropic hardening is accounted for by Wh, while Wg models
size effects.

The following defect energies are investigated:

W 1
g D cGb kAk ; W

ln
g D c0 kAk ln

kAk
A0

; (76)

where c is a constant of order unity, G is the macroscopic shear modulus, b is the
Burgers vector, A0 is a constant, and c0 is given by:
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c0 D
Gbˇ

2� .1 � �/
; (77)

where � is Poisson’s ratio and ˇ is of order unity. The Euclidean norm of the
dislocation density tensor is defined as: kAk D

p
A � A.

The rank-one energyW 1
g can be motivated by simple line tension arguments; see

Ortiz and Repetto (1999) and Hurtado and Ortiz (2012, 2013).
The logarithmic energyW ln

g (Eq. (76)) is motivated by the form of the associated
back stress (Forest and Guéninchault 2013). It turns out that the approachW ln

g leads
to a back stress which is formally close to the one derived in the statistical theory of
Groma et al. (2003), given in 1D by

Gc1

2� .1 � v/ �
@2x1” (78)

for a single-slip situation with slip direction e1. Here, � denotes the total dislocation
density. In the two-dimensional single-slip regime, the back stress involves the
Laplacian of the plastic slip, as postulated by Aifantis (1987). However, the
internal length scale is not interpreted as a material constant but determined by the
dislocation microstructure, if W ln

g is applied.
The stresses ¢ and M are assumed to be energetic, i.e.,

� D
@W

@"e
; M D

@W

@A
(79)

If the stored energy is not differentiable at A D 0, the symbol @ in Eq. (79)2 is
interpreted as a subdifferential operator (see, e.g., Han and Reddy 2013), i.e.,

M j˛D0 2
˚

M W Wg .A/ �M � A � 0 8A
�

: (80)

This can be interpreted as follows. If the stress M is applied at a material point, A
will take a value which minimizes the expression Wg(A) �M � A. For small values
of M, the minimum is given by A D 0. However, for sufficiently large values of M,
the value of A can be determined from the stationarity condition MD @˛Wg.

For example, if Wg is given by W 1
g D cGb kAk, it follows that AD 0 if

M W A 	 W 1
g .A/ D cGb kAk 8A () M W A 	 kMk kAk 	 cGb kAk 8A:

(81)

Hence, it is found that:

(

M 2 fM W ' .M / 	 0g ; if A D 0
M D cGb A

kAk ; else:
(82)

with ®(M)D kMk � cGb.
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Note that the generalized stress M can be computed uniquely from A only if
A ¤ 0. This makes analytical solutions as well as the numerical implementation
difficult. Possible numerical strategies concerning this problem are discussed in
Kametani et al. (2012) as well as Hurtado and Ortiz (2013).

Application to the Shearing of the Periodic Laminate

In this section, the two new potentials are applied to the elasto-plastic laminate
microstructure already considered in section “Size Effects in a Two-Phase Sin-
gle-Crystal Laminate”; see Fig. 1. The two promising candidates of the defect
energy function Wg are investigated concerning their effect on the overall size
effects as well as the dislocation pileup structures building up at impenetrable
boundaries. The dislocation density tensor can be expressed in terms of the edge
density �? D � @x1”

A D ��?e1 ˝ e3: (83)

The quantity �? represents the total Burgers vector amount per unit area of edge
dislocations. Note that its unit (
m�1) differs from the unit of the total line length
per unit volume �, given by 
m�2.

Assuming the defect energy Wg to be a function of jjAjj, the generalized stress
M reads

M D @AWg D @kAkWg
A
kAk

DM .x1/ e1 ˝ e3: (84)

From the balance Eq. (7)2, it follows that

s12 �M
0 D 0: (85)

Throughout this section, the isotropic hardening contribution will be neglected,
i.e., Wh D 0.

Rank-One Defect Energy
For the laminate, the following energy is adopted:

W 1
g D cGb kAk D cGb j�?j ; (86)

where c is of order unity (Ortiz and Repetto 1999). According to Eq. (84), the
generalized stress M reads:

M D � �
?

j�
?

j
cGb D � sign �?cGb; if j�?j > 0

jM j 	 cGb; if j�?j D 0
(87)

where the second line follows from Eq. (82).
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Subsequently, a monotonic shear deformation in the positive direction is pre-
scribed such that the following relations hold in the soft phase: � eff � �C; P” � 0.

The principle of virtual power is written for the real field on the laminate unit
cell V:

Z

V

� W P"C s W PHp CM W curl PHpdV D

Z

@V

t � Pu dS Cm W PHpdS (88)

The last term of the right-hand side vanishes due to the fact that Hp is periodic,
whereas m is antiperiodic. The first term of the right-hand side coincides with the
first term in the left-hand side, as can be shown by means of the Gauss theorem. As
a result we obtain,

Z

@V

s W PHp CM W curl PHp dV D 0 (89)

For the laminate under single slip, this gives:

Z s=2Ch

�s=2

s12 P” C .�cGb sign ”;1/ .�P”;1/ dx1 D 0 (90)

Under monotonic loading, sign ”;1 D sign P”;1, so that

Z s=2Ch

�s=2

s12 P” C cGb j P”;1j dx1 D 0 (91)

According to the Schmid law, �12 C s12 D � rmC where the fields �12, s12 are
uniform. The solution is such that the plastic slip field ”(x1) is uniform in ] � s/2,
s/2[ at each instant. So does P” .x1/ D P”.0/ in ] � s/2, s/2[. It vanishes in ]s/2,
s/2 C h[. It is therefore discontinuous at ˙s/2. As a result, the derivative of the
plastic slip rate is the sum of two Dirac functions:

P”;1 .x1/ D P”.0/
�

ı
�

x1 C
s

2

�

� ı
�

x1 �
s

2

��

(92)

The integration of these Dirac functions (in fact the absolute values due to (91))
on the interval [�s/2, s/2C h] finally gives

s
�

�rmC c � �12
�

P”.0/C 2cGb P”.0/ D 0 (93)

The scaling law follows:

�12 D �
C C

2cGb

s
: (94)
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Fig. 4 Macroscopic shear stress–strain curve for the rank-one energy. The increase of the overall
yield point scales inversely with the size of the soft phase, after Wulfinghoff et al. (2015)

This equation holds in the plastic regime. Clearly, the application of the rank-one
energy increases the macroscopic yield stress by 2cGb/s, i.e., the increase scales
inversely with the size of the soft phase (see Fig. 4). The same scaling behavior
has been found by Ohno and Okumura (2007) for a spherical grain, also using
a rank-one energy. The authors concentrated on the overall mechanical response
without having to compute the fields inside of the grains. As illustrated in Fig. 4, the
dislocations localize in dislocation walls at the elasto-plastic interface.

For the material parameters of aluminum (GD 26.12 GPa and bD 0.286 nm) and
cD 1, the size effect becomes important when the system size is below 10 
m. The
plastic shear strain is constant in the bulk, i.e., the dislocations form singularities
(walls) at the boundaries. The back stress is constant (w.r.t. space) in the bulk.
During the first period, it increases and thereby impedes any plastic deformation.
Therefore, the overall deformation is purely elastic during this period. At a certain
point, the plastic deformation starts, and the back stress remains constant afterward.
Its value is given by 2cGb/s.

Logarithmic Energy
This section investigates the following defect energy:

W ln
g D c0 kAk ln

kAk
A0

; (95)

with the constant c0 as defined in Eq. (77). The energy is motivated by the statistical
theory of dislocations by Groma et al. (2003). The authors derive a back stress
term which involves the second gradient of slip as postulated by Aifantis (1987).
However, their theory involves an internal length scale which is given by 1=

p
�,

where � denotes the total dislocation density.
In pure metals, the geometrical characteristics of the microstructure are essen-

tially determined by the dislocation arrangement. This is a strong argument for a
(variable) internal length scale, which is determined by the available dislocation
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field variables (instead of a constant length scale parameter; see also Forest and
Sedláček (2003b) where this dependency is derived from a dislocation line tension
model).

It is demonstrated subsequently that the approach (95) leads to a back stress
which is similar to that of Groma et al. (2003). However, it should be mentioned
that this energy is neither convex nor smooth with respect to the dislocation density
tensor (a regularization will be discussed at a later stage).

For the laminate problem, the generalized stress M reads (see Eq. (84)):

M D � sign �?c0

�

ln
j�?j

A0
C 1

�

: (96)

In this section, rate-independent plasticity will be considered based on the yield
criterion:

f D
ˇ

ˇ� eff
ˇ

ˇ � �C 	 0: (97)

Here, the effective stress reads:

� eff D .� C s/ � .l ˝ n/ D �12 C s12
.85/
D �12 CM

0: (98)

With Eq. (96) and M
0

D (@�?M) (@x1�?), it follows that

� eff D � �
c0

j�?j
@x1�? D � C

Gˇ

2� .1 � v/

b

j�?j
@2x1”: (99)

Here, the second term can be interpreted as a back stress. Note that the back
stress involves no internal length scale parameter. Instead, the internal length scale,
p

b=�?, is determined by the dislocation microstructure. In contrast to the back
stress of Groma et al. (2003), the internal length scale is determined by the GND
density �? instead of the total density �. Hence, the influence of statistically stored
dislocations (SSDs) is ignored for brevity. Therefore, a homogeneous initial GND
density j�?j D A0 will be assumed to be given. In addition, it is assumed that the
SSD density is equal or less than A0. The soft phase is assumed to be under plastic
loading, with � eff D �C in the soft phase. In this case,

M 0
.85/
D s12 D �

�

�12 � �
C
�

D const:)M D �
�

�12 � �
C
�

x1; (100)

where, again, the constant of integration vanishes due to the symmetry requirement
jM(�s/2)j D jM(s/2)j. The plastic slip ” can be derived from the equality of Eqns.
(96) and (100), which yields a differential equation for ”. The solution reads:

” D
A0L

e

�

exp
� s

2L

�

� exp
�

�a
x1

L

��

with L D
c0

�12 � �C
; (101)
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Fig. 5 Macroscopic
stress–strain diagram for
three different sizes.
Analytical (lines) and
regularized, numerical
(triangles) solution for the
logarithmic potential, after
Wulfinghoff et al. (2015)

where the matching conditions ”(�s/2)D ”(s/2)D 0 have been exploited and where
e D exp (1). The variable a is defined by a D sign ”0 and is assumed positive in
(�s/2, 0) and negative in (0, s/2).

The macroscopic stress–strain relation follows:

” D
A0L

e .s C h/

�

exp
� s

2L

�

.s � 2L/C 2L
�

C
�12

G
: (102)

The solution is evaluated for the following material parameters:

E [GPa] � �C [MPa] b [nm] ˇ A0/b [
m�2]
70 0.34 10 0.286 1 1

A very thin hard phase with negligible width h is considered (h/s D 10�6 for the
analytical solution).

The macroscopic stress–strain curve (102) is illustrated in Fig. 5. A clear
size effect is visible. Apparently, mainly the overall yield stress is affected. The
hardening shows less size dependence. It is remarkable that the model provides a
size-dependent yield stress and nonlinear kinematic hardening.

Since there is no distinct yield stress, the evaluation of the scaling behavior
is based on the offset yield stress at 0.2% plastic strain. The offset yield stress
as a function of the inverse of the size 1/s exhibits the same behavior as in the
results obtained from the rank-one energy. It scales inversely with channel size; see
Wulfinghoff et al. (2015).
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Regularization of the Logarithmic Energy
The following regularization is introduced:

Wg D

(

1
2
c0
b
l2kAk2; kAk < AL

c0 kAk ln kAk
A0
CW0; else:

(103)

In the region of small GND densities, the energy is replaced by a quadratic
potential. The internal length scale l, the transition density ˛L, and the offset energy
W0 are chosen such that Wg, @k˛kWg and @2

k˛k
Wg are continuous at the transition

point kAk D AL. As a result

AL D A0; l
2 D

b

A0
; W0 D

c0A0

2
: (104)

The regularized energy (103) is convex, normalized, and twice differentiable.
The back stress for the laminate problem reads:

x D

(

� c0
A0
@2x1”; j�?j < A0;

� c0
j�
?

j
@2x1”; else:

(105)

Cyclic Behavior of the Laminate

The laminate is now submitted to one full cycle ” D ˙0:05. The hysteresis loops
�12 vs. ” for both rank-one and logarithmic potentials are represented in Fig. 6
for s D 3 
m. In the absence of isotropic hardening, the loops are stabilized
after one full cycle. They are characterized by pure kinematic hardening. The
influence of the back stress is clearly observable. The curves in Fig. 6 have been
obtained numerically. One striking feature of the results is the nonconvexity of
the obtained loops. According to the rank-one model, the first unloading stage
is characterized by reverse plasticity at a constant negative shear stress. When ”
goes through zero again, the overall shear stress experiences a jump of the same
magnitude as computed analytically for monotonic loading in sections “Rank-One
Defect Energy” and “Logarithmic Energy.” The nonconvex loop obtained for
the logarithmic potential is similar but smoother and displays smooth nonlinear
kinematic hardening. A similar nonconvex hysteresis loop was obtained by Ohno
and Okumura (2008) for the rank-one model.

The type of nonlinear kinematic hardening observed for both models can
be identified with Asaro’s type KIII model, corresponding to a first-in/last-out
sequence of dislocation motion (Asaro (1975)). It is considered by Asaro as the
most perfect form of recovery of plastic memory. Such stress–strain loops display
inflection points that are observed in some materials, see Asaro (1975) for a
Nimonic alloy, but such observations have also been made in several Nickel based
superalloys. It is usually attributed to substructural recovery on the microscale,
for instance pileup formation and destruction at ”

0

precipitates. In the present
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Fig. 6 Cyclic loading for sD 3
m

simple single-crystal model, it is the single active hardening mechanism induced
by strain gradient plasticity and the presence of the hard phase in the laminate. It
represents an accurate continuum description of dislocation piling-up and unpiling-
up phenomena.

The experimental evidence of such nonconvex loops is illustrated in Figs. 7 and
8 in the case of polycrystalline Fe–Cr and Al–Cu–Mg alloys, respectively. The first
loop in Fig. 7 (left) exhibits two inflection points, but the convexity is restored
after a few cycles, and the usual shape with still a strong Bauschinger effect is
retrieved in Fig. 7 (right). Figure 8 shows that the amount of plastic recoverability
is controlled by the annealing degree of the dislocation microstructure. Further
evidence of nonconvex loops in the cyclic behavior of FCC alloys can be found in
the recent contribution by Proudhon et al. (2008) dealing with aluminum alloys. The
common characteristics of these FCC alloys are that they all contain a population
of nonshearable intragranular precipitates. This distribution of particles represents
the first series of obstacles to be overcome by dislocations for the plasticity to
start. The distance between precipitates presents a small scatter, and the average
value is the characteristic length responsible for the size-dependent yield limit. This
distance is comparable to the width s in our ideal laminate model. As illustrated
by the TEM observations by Stoltz and Pelloux (1974, 1976), Taillard and Pineau
(1982), and Proudhon et al. (2008), dislocation loops multiply around precipitates
and can be destroyed after reverse loading unless the material is annealed before
reversing the load, see Fig. 8, or unless the multiplication of forest dislocations
or cross-slip effects limit the recoverability of cyclic plasticity. The effect has also
been observed in nickel-base single-crystal superalloys for tension along <111>;
see Fig. 9. The simulations based on the logarithmic potential provide smooth loops
that are closer to the experimental shapes. Our simulations deal with ideal single-
crystal laminates and simulations for polycrystals remain to be done. However, as
shown by the two-dimensional strain gradient plasticity simulations performed by
Ohno and Okumura (2008), based on the rank-one potential, the effect pertains
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for polycrystals. However, these authors did not recognize the physical reality of
the simulated phenomena. Instead, they further developed the model to replace the
rank-one energy potential by a dissipative formulation which restores the convexity
of fatigue loops.

The two nonquadratic energy potentials represent continuum models of a discrete
phenomenon which can be illustrated for a single dislocation source, as shown
in Fig. 10. The cyclic response of a Frank–Read source, simulated by discrete
dislocation dynamics (DDD) (Déprés et al. 2004; Chang et al. 2016), provides a
nonconvex loop which is identical to the one predicted by the rank-one continuum
model. This is related to the fact that an instability of the loop behavior is observed
for a critical stress that is inversely proportional to the length of the source. The
scenario of dislocation source bowing and sudden propagation and multiplication
can be reversed entirely in the absence of strong interaction with the dislocation
forest and in the absence of cross-slip. This explains the concave shape of the stress–
strain loop predicted by the DDD, which is accurately translated by the continuum
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Fig. 9 Stabilized stress–strain loops for nickel-base single-crystal superalloy SC16 at 950 ıC,
experiment vs. simulation after Fedelich (2002)

model; see Fig. 6. Statistical effects of the collective behavior of dislocations finally
destroy the recoverability of plastic deformation and the associated transmission of
the single source behavior to the macroscopic response.

Grain Size Effects in Polycrystals

The model is now applied to simulate the response of polycrystals and the effects of
grain size.
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Fig. 10 Cyclic behavior of a single Frank–Read dislocation source simulated by discrete disloca-
tion density. (Courtesy of Dr. M. Fivel)

The interface conditions at grain boundaries play a major role in the simulated
size effects in the polycrystal behavior. No special interface law is considered in
this work, although such physically motivated interface conditions exist in the
literature; see Gurtin and Anand (2008). Instead, we consider the canonical interface
conditions that arise from the formulation of the balance equations of the microcurl
continuum model. These conditions are the continuity of displacement, u, and
the continuity of plastic microdeformation, ¦p. These conditions also include the
continuity of the simple and double tractions, t and M, described in Eq. (8). Con-
tinuity of displacement excludes grain boundary cracking and sliding. Continuity
of plastic microdeformation is reminiscent of the fact that dislocations generally do
not cross grain boundaries, especially for such random grain boundaries. Note that
in the microcurl model, only the kinematic degrees of freedom ¦p are continuous.
This is not the case of the plastic deformation, Hp, which is treated here as
an internal variable. However, due to the internal constraint discussed in section
“Model Formulation,” Hp closely follows the plastic microdeformation so that it
is quasi-continuous at grain boundaries when the penalty coefficient, H�, is high
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enough. Conversely, lower values of H� may allow slightly discontinuous plastic
deformation, which may be tentatively interpreted as dislocation sinking inside grain
boundaries. The continuity of the associated tractions expresses the transmission
of classical and generalized internal forces from one grain to another through
grain boundaries. Such continuum models are then able to mimic in that way the
development of dislocation pileups at grain boundaries (Forest and Sedláček 2003a).

More elaborate grain boundary behavior laws are necessary to go beyond the
three possible interface conditions readily available according to the microcurl
model: vanishing microdeformation, continuous microdeformation, or vanishing
microtractions at grain boundaries. They require proper account of transmission
and absorption rules for dislocations at grain boundaries. A simple and efficient
strategy was proposed for the formulation and finite element implementation of such
interface constitutive laws by Wulfinghoff et al. (2013a). The reader is referred to
the references quoted therein for more advanced grain boundary behavior laws.

Boundary Value Problem for Polycrystals

The size effects exhibited by the solution of the boundary value problem are linked
to an intrinsic length scale, ls, introduced through the generalized moduli H� and A
of Eq. (32) and defined as:

ls D

s

A

H�

: (106)

This intrinsic length scale has to be consistent with the fact that plasticity effects
occur at scales ranging from hundreds of nanometers to a few microns. In addition,
as stated in section “Model Formulation,” the coupling modulus, H�, has to be
chosen high enough to ensure that ¦p and Hp are close. These requirements are
guidelines for the choice of relevant generalized moduli H� and A. The sets of
material parameters used in this section are chosen in that way.

The finite element simulations have been made on periodic 2D meshes of
periodic polycrystalline aggregates generated by a method based on Voronoi
tessellations (Fig. 11a, b). Quadratic isoparametric finite elements with reduced inte-
gration are used. The random distribution of the grain centers has been controlled
so that their sizes are sensibly the same, around the mean grain size, d. A random
orientation is assigned to each grain, and two slip systems are taken into account
for simplicity. In 2D, the plastic behavior of FCC crystals can be simulated with 2D
planar double slip by considering two effective slip systems separated by an angle of
2 (Asaro 1983; Bennett and McDowell 2003). Figure 11c describes the geometry.
The slip system pair is oriented by the angle � , which is the grain orientation
randomly fixed for each grain. For a FCC crystal  D 35.1ı, it corresponds to the
orientation of the close-packed planes in the crystal lattice of the grain.
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Fig. 11 Periodic meshes of the 2D periodic aggregates used in the finite element simulations
including 52 grains. Two slip systems are taken into account in each randomly oriented grain.
Various mean grain sizes, d, ranging from tens of nanometers to hundreds of microns, are
investigated. On the right, description of the two effective slip systems for 2D planar double slip

Periodic homogenization for generalized continua is used to predict the effective
response of the polycrystal. The displacement field is assumed to be of the form

u.x/ D E :x C v.x/; (107)

with the fluctuation v periodic, meaning that it takes identical values at homologous
points of the unit cell (Forest et al. 2001). The plastic microdeformation field, ¦p, is
assumed to be periodic, meaning that no rotational macroscopic plastic deformation
is imposed to the unit cell. Its components are equal at homologous opposite nodes.
According to periodic homogenization, the simple and double tractions t and m are
antiperiodic at homologous points of the unit cell.

Polycrystals are random materials so that the periodicity constraint may lead
to a bias in the estimation of the effective properties. This boundary effect can be
alleviated by considering several realizations of the microstructure and performing
ensemble averaging (Zeghadi et al. 2007).

Overall Cyclic Response of a Polycrystalline Aggregate

The finite element simulations of the boundary value problem presented previously
have been conducted under generalized plane strain conditions on aggregates with
a relatively small number of grains. The aim here is not to obtain a representative
response but to catch the grain size effects and to explore qualitatively the impact
of different sets of material parameters. In this section, a virtual material is
considered with various intrinsic length scales. The macroscopic stress–strain curve
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Table 2 Sets of material parameters used in the 24-grain aggregate case (Fig. 11a). The intrinsic
length scale, ls D

p

A=H¦, is given for each set

Set 
 [MPa] � c [MPa] H� [MPa] A [MPa mm2] ls [
m]

a 35,000 40 3.0 106 1.0 10�2 5.8 10�2

b 35,000 40 1.0 106 1.0 10�2 1.0 10�1

c 35,000 40 3.5 105 1.0 10�2 1.7 10�1

d 35,000 40 8.8 104 1.0 10�3 1.1 10�1

= 0.4μm

2.0μm

4.0μm

10.0μm

200.0μm

12

12
 [

M
Pa

]

Fig. 12 Macroscopic stress–strain response of the 52-grain aggregate under simple shear for
various mean grain sizes, d. The set of material parameters used is labeled (g) in Table 3

is obtained by applying a cyclic simple shear loading controlled by the average
strain component E12 on the aggregate of 52 grains with d D 0.2 
m and the set of
material parameters labeled (c) in Table 2. The mean stress component †12 is then
computed:

†12 D
1

V

Z

V

�12 dV; E12 D
1

V

Z

V

"12 dV; (108)

where V denotes each polycrystal unit cell. The simulated response displays the
kinematic hardening effect produced by the microcurl model. The stress–strain
curves shown in Fig. 12 prove that this kinematic hardening is size dependent: it
increases for smaller grains. Note that the observed overall kinematic hardening has
two distinct sources: the intragranular back stress induced by plastic strain gradients
and the intergranular internal stress that originates from the grain to grain plastic
strain incompatibilities. The latter contribution is also predicted by classical crystal
plasticity models.
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Fig. 13 Effect of the mean grain size, d, on the macroscopic flow stress,
P

12 Í 1%, at 1% plastic
strain. The results are obtained for the 52-grain aggregate using the different sets of material
parameters given in Table 3. The scaling law exponent, m, is identified in each case

Figure 13 presents the effect of the mean grain size, d, on the macroscopic flow
stress at 1% plastic strain in the 52-grain aggregate in a log–log diagram for different
intrinsic length scales, lS , introduced through the sets of material parameters
(labeled a, b, c, and d) given in Table 2. The considered loading conditions are still a
simple shear test with periodic boundary conditions. The curves exhibit two plateaus
for large (d > 20
m) and small (d < 0.1 
m) mean grain sizes with a transition
domain in between. This tanh shape indicates that when d is large compared to
the intrinsic length scale, ls, strain gradient effects are small, and the kinematic
hardening arising from the microcurl model vanishes. The model saturates when
d is of the order of ls or smaller. The transition domain exhibits a strong size
dependence, the polycrystalline aggregate becoming harder for decreasing grain
sizes. The position of the transition zone, the maximum extra stress (the distance
between the two plateaus), and the scaling law exponent, m, in the size-dependent
domain are controlled by the material parameters used in the model. The two latter
effects are controlled by the coupling modulus, H�; they both increase for higher
values of H� as shown in Fig. 13. The scaling exponent is defined as the slope in the
log–log diagram in the inflection domain, reflecting the scaling law:

†12 / d
m: (109)

It is obtained with the sets of material parameters given in Table 2. The computed
values range from �0.26 to �0.64 including the well-known Hall–Petch exponent
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Table 3 Sets of material parameters used in the 52-grain aggregate case (Fig. 11b)

Set 
 [MPa] � c [MPa] Q [MPa] b h˛˛ h˛ˇ, ˛¤ ˇ

e 27,000 0.75 7.9 10.2 1 4.4
f 27,000 0.75 7.9 10.2 1 4.4
g 27,000 0.75 7.9 10.2 1 4.4

Set H� [MPa] A [MPa mm2] ls [
m]

e 1.0 106 1.0 10�2 1.0 10�1

f 3.5 105 1.0 10�2 1.7 10�1

g 5.0 104 1.0 10�2 4.5 10�1

m D �0.5. In fact, it was shown in Cordero et al. (2010a) that values of m ranging
from 0 to �2 can be simulated with the microcurl model in the case of two-phase
microstructures. In each case, these values are obtained without classical isotropic
hardening, meaning that the linear kinematic hardening produced by the model
is able to reproduce a wide range of scaling laws. Note that conventional strain
gradient plasticity models do not lead to tanh-shape curves but rather to unbounded
stress increase for vanishingly small microstructures (Cordero et al. 2010a).

Grain Size Effects in Idealized Aluminum Polycrystals

Similar finite element simulations have been performed on the idealized aluminum
aggregate of 52 grains of Fig. 11. An additional isotropic hardening component is
addedas in (Méric et al. 1991) to obtain a more realistic response of large aluminum
grains. The size-independent hardening law reads:

R˛ D �c CQ

n
X

ˇ

h˛ˇ
�

1 � exp
�

�b”ˇcum

��

; (110)

where n is the number of slip systems (here nD 2), Q and b are material coefficients
defining nonlinear isotropic hardening, H’“ is the interaction matrix, and ”ˇcum is
the accumulated micro-plastic slip on the slip system ˇ. Cumulative plastic slip
results from the integration of the differential equation P”ˇcum D

ˇ

ˇ P”ˇ
ˇ

ˇ. The material
parameters used in these simulations are given in Table 3. The macroscopic stress–
strain curves presented in Fig. 12 are obtained by applying a simple shear loading
controlled by the average strain component E12 on the 52-grain aggregate with
various mean grain sizes, d, taken in the size-dependent domain. The chosen set of
material parameters has the label (g) in Table 3. These parameters are such that an
acceptable description of aluminum polycrystals is obtained for large grains and that
a Hall–Petch-like behavior is found in a plausible range of grain sizes. However, we
did not attempt to calibrate the amplitude of the extra hardening so that simulation
predictions remain qualitative. The curves of Fig. 12 show again that the kinematic
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Fig. 14 Grain size effect on the accumulated plastic slip. These contour plots are obtained with
the 52-grain aggregate for the same mean value of cumulative plastic strain p D 0.01. The set of
material parameters (g) of Table 3 is used. The pairs of slip plane directions are represented for
each grain on the 1 
m contour plot

hardening produced by the model is strongly size dependent. The set of material
parameters (g) of Table 3 gives the ideal Hall–Petch scaling law exponent mD�0.5.

An important output of the simulations is the dependence of the stress and strain
fields in the grains of the polycrystal on grain size. Figures 14 and 15 show the
contour plots of the field of accumulated plastic slip, computed as:

Pp D

r

2

3
P"p W P"p; (111)

where "p is the symmetric part of the plastic deformation, Hp, and the contour plots
of the norm A of the dislocation density tensor,

kAk D
p

A W A; (112)

respectively. The considered grain sizes are taken in the size-dependent domain
where the evolution of the fields is assumed to be physically relevant. The chosen
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Fig. 15 Grain size effect on the norm of the dislocation density tensor. These contour plots are
obtained with the 52-grain aggregate for the same mean value of macroscopic accumulated plastic
strain p D 0.01. The set of material parameters (g) of Table 3 is used. The pairs of slip plane
directions are represented for each grain on the 1 
m contour plot

set of material parameters has the label (g) in Table 3; it corresponds to an intrinsic
length scale ls D 0.45
m and gives a scaling law exponent m D �0.5. The mean
value of the accumulated plastic slip is the same for all cases; only its distribution
varies with the size of the microstructure as shown in Fig. 14.

The first contour plot of each figure is obtained for d D 200 
m Ï ls D 0.45
m,
at the very beginning of the size-dependent behavior domain according to Fig. 13.
At this size, the simulated fields show that p is quite inhomogeneous and that some
deformation bands appear; jjAjj is localized at the grain boundaries and almost
vanishes in the grain cores. The contour plots obtained for 2
m < d < 20 
m show
a significant evolution of both fields. One observes the formation of a network of
strain localization bands with decreasing grain size. These bands are slip bands as
they are parallel to the slip plane directions represented on the 1 
m contour plot of
Fig. 14. They compensate the larger blue zones where plastic strain cannot develop
due to the higher energy cost associated with its gradient. Plastic strain becomes
stronger inside the localization bands. This is due to the fact that the contour plots
are given for fixed macroscopic cumulative plastic strain mean value of p, which
implies that the applied total strain is higher for small grain sizes as suggested by
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Fig. 12. The field of the norm of the dislocation density tensor is still high close
to grain boundaries and spreads over the grain cores. The last contour plot of each
figure is obtained for d D 1 
m, a size close to ls. Here the model starts to saturate,
which can be seen from the simulated fields. The field of p does not evolve anymore
and jjAjj decreases. In fact, as ls controls the strain gradient effects, strong strain
gradients cannot develop because they become energetically too expensive when
the grain size is too small.

Conclusions

The micromorphic crystal plasticity theory introduces independent plastic microde-
formation degrees of freedom. It represents a relaxation of the strain gradient
plasticity model. It contains as a special case the micropolar crystal plasticity model.
The advantage of the micromorphic framework is that it provides a wider range of
modeling possibilities regarding constitutive laws and boundary conditions, as it was
illustrated for the description of Hall–Petch effects in polycrystals. It has also merits
regarding computational mechanical aspects since its implementation is rather
straightforward and can be used for strain gradient plasticity computations based
on proper internal constraints. The advantage of the micropolar theory compared
to the micromorphic one is its reduced number of degrees of freedom, 3 instead
of 8/9 in 3D (8 dof if plastic incompressibility is enforced). The micropolar model
incorporates the effect of the lattice curvature tensor, which represents an essential
part of the dislocation density tensor.

A full set of constitutive equations has been formulated for micromorphic crystal
plasticity by extending the framework of generalized standard materials based on
the introduction of free energy and dissipation potentials.

Simple examples of the plasticity of sheared single-crystal layers show the ability
of the continuum models to reproduce the essential features of the collective behav-
ior of dislocations piling up in thin layers, channels, and laminate microstructures,
as predicted by discrete dislocation dynamics. The scaling laws predicted by the
continuum models strongly depend on the choice of the constitutive equations. For
example, standard quadratic free energy potential was shown to be inadequate to
reproduce Orowan-like size effects. Strongly nonlinear potentials, including the
logarithmic free energy density, were shown to be more closely related to the physics
of dislocations.

Size effects also strongly influence the strain localization behavior of polycrystals
for which the formation of intense slip bands is predicted in micron-size grains by
the micromorphic models. This feature is to be related to the high energy cost of
dislocation pileup formation in small grains.

Special attention was given to the cyclic response of crystals, which is of the
utmost importance for the prediction of fatigue lifetime of materials. The question
of recovery of plastic strain has been shown to be a central issue. In the absence
of strong forest interaction and cross-slip, total recovery of plastic strain gradients
is possible, leading to nonconvex cyclic stress–strain loops as observed in some
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two-phase alloys. Note that results from discrete dislocation dynamics and the
micropolar model were provided in the chapter dedicated to micropolar crystal
plasticity. Similar comparisons can be found in the case of micromorphic model
in the Reference Chang et al. (2016) where the continuum and discrete descriptions
of dislocation pileups at interfaces are discussed.

Much work remains to be done in the development of predictive constitutive
equations in micropolar and micromorphic crystal plasticity due to the com-
plex underlying dislocation mechanisms. Especially, suitable modeling of grain
boundary behavior remains a major issue for higher-order modeling of polycrystal
plasticity.
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