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This work is concerned with the influence of non-smooth yield functions on material instabilities. The
loss of ellipticity condition is examined in the case of a family of non-smooth yield functions in principal
stress space. A procedure for the numerical detection of loss of ellipticity in multisurface plasticity is pro-
posed. An explicit expression of the subdifferential of the non-smooth yield function is obtained, thereby
extending existing results in the literature for the Tresca and Mohr–Coulomb criteria. Structural compu-
tations show that the use of non-smooth yield functions can lead to much earlier failure prediction than
in the case of a commonly used von Mises criterion.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

This work is concerned with strain localization in the context of
non-smooth plasticity. Introduced by Hill (1962) and Rice (1976),
loss of ellipticity is commonly used as a criterion for the detection
of the onset of strain localization. Loss of ellipticity is usually
referred to as Rice’s criterion for localization and corresponds to
the existence of vanishing eigenvalues of the acoustic tensor. Loss
of ellipticity is one criterion amongst others for the detection of
instabilities. In particular, it has to be distinguished from loss of
strong ellipticity which corresponds to the loss of positive definite-
ness of the symmetrized acoustic tensor. Classifications of instabil-
ity criteria can be found in, e.g., (Stein et al., 1995; Nguyen, 2000;
Bigoni, 2012; Petryk, 2014) amongst others. In a three-
dimensional solid at small strains undergoing tension, loss of ellip-
ticity is usually difficult to achieve unless the model exhibits a suf-
ficiently strong softening behavior, i.e., a strongly negative
hardening modulus. In addition, in the case of a smooth yield func-
tion, it has been shown by Bigoni and Hueckel (1991) that the crit-
ical hardening modulus for strain localization is never positive for
associative plasticity at small strains. From a computational point
of view, the detection of loss of ellipticity is recast as a minimiza-
tion problem of the determinant of the acoustic tensor over the set
of unit normals. Numerical strategies have been proposed in the
literature by, e.g., Mosler (2005). More recently, a general and effi-
cient multistart algorithm has been proposed for the detection of
loss of ellipticity in elasto-plastic structures by Al Kotob et al.
(2019). In multisurface plasticity, also referred to as non-smooth
plasticity, the incremental constitutive equations are nonlinear
due to the possible activation of multiple mechanisms. In this con-
text, Rice’s criterion can be seen as a linearization of the general
problem of bifurcation in a band (Petryk, 1992). In addition, this
nonlinearity implies that the consequences of loss of ellipticity
depend on the stability of the equilibrium. Conditions for shear
band bifurcation in multisurface plasticity have been studied by
a few authors by exploiting the linearized loss of ellipticity condi-
tion (Sawischlewski et al., 1996; Steinmann, 1996) or by address-
ing the fully nonlinear problem (Petryk, 2000).

Strain localization strongly depends on the plastic yield func-
tion. It is reported in the literature that strain localization predic-
tions are highly sensitive to the formation of corners on the
current yield surface. The phenomenon of vertex formation has
been revealed by calculations based on crystal plasticity and by
experimental evidence Cailletaud (1992); Pilvin, 1994. Plasticity
theories that take into account singularities on yield surfaces can
roughly be divided into two categories, namely, phenomenological
models based on the deformation theory of plasticity and non-
smooth models based on the classical flow theory of plasticity.
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A first class of phenomenological corner theories has been pro-
posed by Christoffersen and Hutchinson (1979). It is assumed that
a corner exists on the yield surface and that it can be represented
by a generalized cone in stress space. A general framework is pro-
posed and then specialized to its simplest version known as the J2
corner theory. The model is built in such a way that it coincides
with J2 deformation theory when stress increments are nearly pro-
portional. This is achieved by taking the instantaneous moduli for
nearly proportional loading equal to the tangent moduli of defor-
mation theory. The aforementioned J2 corner theory has been used
by Hutchinson and Tvergaard (1980); Hutchinson and Tvergaard,
1981; Tvergaard et al., 1981; Triantafyllidis et al., 1982; Petryk
and Thermann, 1992; Petryk and Thermann, 2002 for instability
analysis at large strains and it is observed that a good agreement
with experimental data is obtained. According to Hughes and
Shakib (1986); Simo, 1987, phenomenological corner theories
were not well suited for large-scale simulations because they
require one to track corners formation and their evolution. For
these reasons, Hughes and Shakib (1986) has proposed a flow the-
ory that mimics corner effects. A smooth yield surface and an asso-
ciative flow rule are considered but the elasto-plastic moduli
decrease as the deviation of the strain rate from proportional load-
ing increases. Similarly, Simo (1987) has proposed a pseudo-corner
theory using a smooth yield surface with a non-normality flow rule
under the assumption that the plastic strain-rate and strain-rate
deviator are coaxial. This model has been used in a few studies
such as (Rønning et al., 2010) where classical flow, pseudo-
corner and deformation theories are compared in a buckling anal-
ysis. Following these ideas, Kuroda and Tvergaard (2001) extended
the pseudo-corner model of Simo (1987) by relaxing the coaxial
assumption. Furthermore, Kuroda (2015) and Kuroda (2016) incor-
porated the pseudo-corner model Kuroda and Tvergaard (2001)
into strain-gradient plasticity. The common feature of all the afore-
mentioned approaches is a reduction in the instantaneous shear
moduli which in turn reduces the predicted bifurcation levels.

The extension of classical flow theory of plasticity to elastic
domains formed by independent yield surfaces intersecting non-
smoothly has first been carried out by Koiter (1953). The general-
ization to dependent yield surfaces has been achieved by Mandel
(1965) to accommodate crystal plasticity. This formulation of plas-
ticity is commonly referred to as multisurface plasticity and its
numerical treatment can be found in Simo et al. (1988). In metal
plasticity, the standard threshold such as the Tresca criterion is
covered by multisurface plasticity. A fully implicit integration algo-
rithm for the Tresca criterion has been proposed by Perić and de
Souza Neto (1999) by having recourse to an optimal parameteriza-
tion in stress space. The extension of this approach to the Mohr–
Coulomb criterion can be found in the textbook de Souza Neto
et al. (2011). A generic fully implicit algorithm for multisurface
models in principal stress space is presented by Karaoulanis
(2013) together with a comprehensive review of methods for han-
dling non-smooth yield surfaces. It should be noted that modern
theory of plasticity is based on convex analysis (Moreau, 1976;
Suquet, 1981). In this framework, the flow rule of plasticity is writ-
ten as a differential inclusion involving the subdifferential set of
the yield function and the initial boundary value problem is recast
into an abstract variational inequality. As a result, non-smooth
elastic domains can be considered and multisurface models can
be obtained as a special case. Theoretical aspects including mathe-
matical theory and numerical analysis are presented by Han and
Reddy (2012) in the context of small perturbations. Although the
existence of solutions in finite deformations is still an open prob-
lem, recent advances can be found in (Carstensen et al., 2001 and
Mielke, 2004) for the incremental boundary value problem. Very
recently, a fully implicit subdifferential-based algorithm for the
2

Mohr–Coulomb criterion has been devised by Sysala et al. (2016).
In contrast to multisurface-based algorithms, a single plastic
Lagrange multiplier has to be computed and a simpler expression
of the consistent tangent matrix can be determined.

The present paper makes the following contributions to the
analysis of material instabilities: (a) The influence of non-smooth
yield functions on the onset of loss of ellipticity is investigated
by considering a family of yield functions that can be written as
a linear combination of the principal stresses. Such a family
includes classical yield functions such as the Tresca, twin shear
stress (Yu, 1983), or the more recent mean influence factor model
(Zhang et al., 2020). (b) It is shown that the presence and shape of
corners on the yield surface allow for either postponing or advanc-
ing loss of ellipticity, or equivalently, decreasing or increasing the
critical hardening modulus. (c) Based on the recent work of Al
Kotob et al. (2019), a procedure for the numerical detection of loss
of ellipticity in multisurface plasticity is proposed. (d) An explicit
expression of the subdifferential set for the considered family of
yield functions is provided, hence extending existing results in
the literature for the Tresca and Mohr–Coulomb criteria (He
et al., 2005; Sysala et al., 2017). Such an expression is contained
in the abstract form of the flow rule and can be used to, e.g., estab-
lish the multisurface form of the flow, or devise an implicit integra-
tion algorithm (Sysala et al., 2017). (e) Finite element simulations
are performed on simple and realistic geometries in order to illus-
trate the proposed analysis. It is found that the choice of the yield
function has a dramatic effect on the failure of structures. To the
authors’ best knowledge, such results are not yet reported in the
literature.

This paper is organized as follows. First, in Section 2, the theory
of plasticity is presented in a convex analysis setting. In Section 3,
the conditions for loss of ellipticity in multisurface plasticity are
recalled. The family of yield functions considered in this work is
described in Section 4 which includes the definition of the flow
rule in subdifferential and multisurface forms. The critical harden-
ing moduli and shear bands orientations are then determined for
stress states that lie on the smooth portions and corners of the
yield surfaces. Finally, in Section 5, numerical illustrations are pro-
vided in the case of a cube and a thin plate undergoing tension, and
an experimental tubular specimen undergoing tension and torsion.

2. Non-smooth plasticity

In this section, we briefly recall the dual formulation of plastic-
ity under the assumption of small strains. Comprehensive presen-
tations of the theory of plasticity together with computational
aspects at finite and small strains can be found in, e.g., (Simo and
Hughes, 2006) or (de Souza Neto et al., 2011). Theoretical aspects
including mathematical and numerical analysis are presented by
Han and Reddy (2012) and the recent review of Reddy (2017).

2.1. Initial boundary value problem and flow rule

Let X be a three-dimensional subset of R3 with Lipschitz bound-
ary C corresponding to the reference configuration occupied by the
body of interest B. The reference configuration undergoes a defor-
mation map u : X�T ! R3 that results in a deformed configura-
tion Xt . Any point in the reference configuration is denoted by
x 2 X. We denote by u : X�T ! R3 the displacement field given
by u x; tð Þ ¼ u x; tð Þ � x and let e : X�T ! M3

S Rð Þ be the second-
order infinitesimal strain tensor given by

e x; tð Þ ¼ 1
2

u x; tð Þ � rx þrx � u x; tð Þð Þ: ð1Þ
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Based on thermodynamic considerations, the constitutive equa-
tions are described in terms of the Helmholtz free energy function
w. In order to account for plasticity, the strain tensor e is additively
decomposed into an elastic contribution ee and a plastic contribu-
tion ep, i.e.,

e x; tð Þ ¼ ee x; tð Þ þ ep x; tð Þ: ð2Þ
In order to account for hardening, we introduce a symmetric

second-order tensor a : X�T ! M3
S Rð Þ which models kinematic

hardening, and a vector p : X�T ! Rmp which models isotropic
hardening. Here,mp P 1 is an integer that corresponds to the num-
ber of internal variables that model isotropic hardening. In most
situations, isotropic hardening is described by a single internal
variable, i.e., mp ¼ 1. Multiple internal variables can be encoun-
tered in the cases of complex isotropic hardening behaviors or
multisurface plasticity. For instance, in the case of single crystal
plasticity, mp can be equal to the number of crystal systems. Let
then X and R be the symmetric second-order tensor and the vector
which are conjugate to a and p, respectively. The Helmholtz free
energy function, assumed to be a function of the elastic strain ten-
sor ee :¼ e� ep and of the hardening variables a and p, is further
decomposed as

w ee;a;pð Þ ¼ we e
eð Þ þ wp a;pð Þ; ð3Þ

where we and wp denote the elastic and inelastic contributions,
respectively. In the context of linearized plasticity, the elastic free
energy function is chosen as we e

eð Þ ¼ 1=2ð Þee : C : ee where C

denotes the fourth-order elasticity tensor. Following the Clausius–
Duhem inequality, the Cauchy stress tensor r and the conjugate
forces X and R are given by

r ¼ C : ee; X ¼ � @wp

@a
; R ¼ � @wp

@p
: ð4Þ

The second-order tensor X corresponds to the back-stress and
the entries of the vector R ¼ R1; . . . ;Rmp

� �
correspond to yield stres-

ses that define the yield surface. In what follows, S and P denote
the sets of generalized stresses and rate plastic variables such that
r;X;Rð Þ 2 S and _ep; _a; _pð Þ 2 P. Arbitrary triplets inP andSwill be
denoted by A;B; cð Þ and ~r; ~X; ~R, respectively. The evolution of the
plastic strain tensor and hardening variables is described in terms
of an elastic domain E. Let then NE r;X;Rð Þ be the normal cone to
the elastic region E at r;X;Rð Þ 2 S,

NE r;X;Rð Þ ¼ A;B; cð Þ 2 P jA : r� ~rð Þ þ B : X� ~X
� �

þ c � R � ~R
� �

P 0; 8 ~r; ~X; ~R
� �

2 E
n o

;

ð5Þ

and let @/ be the multi-valued subdifferential set of the yield func-
tion, i.e.,

@/ r;X;Rð Þ ¼
A;B; cð Þ 2 P j/ ~r; ~X; ~R

� �
P / r;X;Rð Þ þ A : ~r� rð Þ þ B : ~X� X

� �
þ c � ~R � R

� �
; 8 ~r; ~X; ~R
� �

2 S
n o

:

ð6Þ

The evolution of the plastic and internal variables are governed
by the abstract flow rule

_ep; _a; _pð Þ 2 NE r;X;Rð Þ; ð7Þ
which can be seen as an alternative formulation of the principle of
maximum dissipation. The elastic domain is expressed in terms of a
yield function / as follows

E ¼ ~r; ~X; ~R
� �

2 S j/ ~r; ~X; ~R
� �

6 0
n o

; ð8Þ

where it is assumed that E is a closed convex set that contains the
origin, i.e., / 0;0;0ð Þ 6 0. Based on results in convex analysis (Han
and Reddy, 2012; Reddy, 2017), the abstract flow rule given by
Eq. (7) can also be written in terms of the subdifferential set @/,
3

_ep; _a; _pð Þ 2 _c@/ r;X;Rð Þ; ð9Þ
where _c is a Lagrange multiplier that satisfies the Karush–Kuhn–T
ucker conditions (Eve et al., 1990; Eve et al., 1990)

_c P 0; / r;X;Rð Þ 6 0; _c/ r;X;Rð Þ ¼ 0:

A yield function linear with respect to the principal stresses will
be chosen in Section 4 and an explicit expression of its subdifferen-
tial set is provided in A. We end this section by recalling the
boundary value problem of interest. Essential and natural bound-
ary conditions are applied on the partitions CD and CN of C, with
CD \ CN ¼ £ and C ¼ CD [ CN . Under the assumption of a quasi-
static deformation process, the strong formulation of the initial
boundary value problem takes the form

� $ � r ¼ f; in Xt �T; ð10aÞ
rn ¼ td; on CN �T; ð10bÞ
u ¼ ud; on CD �T; ð10cÞ

where r : X�T ! M3
S Rð Þ is the second-order Cauchy stress tensor,

f 2 R3 describes the volume forces, and n is the outward unit nor-
mal at x 2 CN .

2.2. Multisurface plasticity deduced from convex analysis

In the sequel of this work, the analysis of material instabilities is
performed by relying on the multisurface form of the flow rule.
Hence, this section briefly describes how the multisurface flow rule
can be deduced from the abstract flow rule (7). We consider elastic
regions E formed by subsets Ej � S that intersect non-smoothly,
where S denotes the set of generalized stresses. Hence, the elastic
domain is assumed to take the form E ¼ Tm

j¼1Ej with

Ej ¼ ~r; ~X;R
�
j

� �
2 S j/j ~r; ~X;R

�
j

� �
6 0

n o
; j ¼ 1; . . . ;m; ð11Þ

where /j is j-th yield function associated to the elastic domain Ej. If

there exists a family lj

n om

j¼1
of positive real scalars such that

/ r;X;Rð Þ ¼
Xm
j¼1

lj/j r;X;Rj
� �

; ð12Þ

then it has been shown by Clarke (1990) that @/ takes the form

@/ r;X;Rð Þ ¼ M 2 M3
S jM ¼

Xm
j¼1

ljMj; Mj 2 @/j r;X;Rj
� �( )

; ð13Þ

where @/j is the subdifferential set associated to /j. Assuming that
the yield functions /j; j ¼ 1; . . . ;m, are smooth functions of the gen-
eralized stresses, the subdifferential sets @/j are simply given by the
singletons

@/j ¼ _ep; _a; _pj
� � ¼ rr/j;rX/j;rRj/j

� �n o
; j ¼ 1; . . . ;m; ð14Þ

and the abstract flow rule given by Eq. (9) reduces to

_ep ¼
Xm
j¼1

_cjrr/j; _a ¼ �
Xm
j¼1

_cjrX/j; _p ¼ �
Xm
j¼1

_cjrR/j; ð15Þ

which corresponds to Koiter’s form of the flow rule. The Lagrange
multipliers _c1; . . . ; _cm are solutions to the problem

_cj P 0; /j r;X;Rj
� �

6 0; _cj/j r;X;Rj
� � ¼ 0; _cj _/j ¼ 0; j

¼ 1; . . . ;m; ð16Þ
which corresponds to the set of Karush–Kuhn–Tucker and consis-
tency conditions. The Lagrange multipliers _c1; . . . ; _cm are related to
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_c and l1; . . . ;lm through the relationships (Koiter, 1953; Mandel,
1965)

_cj ¼ _clj; j ¼ 1; . . . ;m:

Eq. (15) complemented by the conditions (16) is referred to as a
multisurface model for continuously differentiable yield functions
that intersect non-smoothly. Let J be the set defined as
J ¼ J 2 1; . . . ;mf g : f J ¼ 0

� �
and let by Mact ¼ Card Jð Þ be the num-

ber of active mechanisms. Using the constitutive Eqs. (4) together
with the chosen form of the canonical yield function, one has the
following rate constitutive equations (Koiter, 1953; Mandel, 1965)

_r _eð Þ ¼ C : _e�
X
J2J

C : NJ _cJ ; _X ¼
X
J2J

K að Þ : NJ _cJ ; _RI

¼
X
J2J

HIJ pð Þ _cJ ; ð17Þ

where NI ¼ rr/I is the normal tensor to the I-th yield surface,
K ¼ r2

awp and H½ � ¼ r2
pwp are the kinematic and isotropic harden-

ing moduli, respectively. For a given strain rate, the non-negative
Lagrange multipliers _cJ

� �
J2J can be obtained by invoking the consis-

tency conditions _cJ _/J ¼ 0 for J 2 J. By successively applying the
chain rule, one finds the classical rate equation

_/j r;X;Rð Þ ¼ rr/j r;X;Rð Þ : _rþrX/j r;X;Rð Þ
: _XþrRj/j r;X;Rj

� �
_Rj; ð18Þ

which together with Eq. (17), leads to the following non-linear sys-
tem of equations for the non-negative Lagrange multipliers (Petryk,
2000):X
J2J

GIJ a;pð Þ _cJ ¼ NI : C : _e; I 2 J; ð19Þ

where the coefficients GIJ are given by

GIJ a;pð Þ ¼ vIJ þ 1IJ að Þ þ HIJ pð Þ; 1 6 I; J 6 m; ð20Þ
with vIJ 	 NI : C : NJ and 1IJ að Þ ¼ NI : K að Þ : NJ . The existence of
solutions to the problem defined by Eq. (19) is discussed in
(Petryk, 2000). By plugging the solution to Eq. (20) into Eq. (17), it
is found that the elasto-plastic tangent tensor Cep, defined such that

_r _eð Þ ¼ Cep _eð Þ : _e; ð21Þ
is given by (Koiter, 1953; Mandel, 1965)

Cep _eð Þ ¼ C�
X
J2J

C : NJ � ~NJ : C; ~NJ ¼
X
K2J

G
��1
JK a;pð ÞNK ; ð22Þ

where G
�
�1
IJ a;pð Þ denote the entries of the inverse matrix of the

matrix G
�
a;pð Þ

� 	
which gathers the coefficients GMN a;pð Þ for

M;Nð Þ 2 J� J. It should be noted that the incremental constitutive
Eq. (21) is nonlinear due to its dependence on the set of active
mechanisms J. Such a nonlinearity does not appear in smooth plas-
ticity and plays an important role in the prediction of material
instabilities as shown by Petryk (1992). Other examples of incre-
mentally nonlinear models can be found, for instance, in the work
of Chambon et al. (2000) in the case of geomaterials.

3. Conditions for shear band bifurcation in non-smooth
plasticity

This section is concerned with material instabilities due to the
development of first-order weak discontinuities. Following Rice
(1976), let r _u 0ð Þ be a homogeneous solution to the rate boundary
value problem. We are concerned with solutions involving the
4

existence of a shear band, i.e., the strain-rate is given by r _u 0ð Þ out-
side the shear band and given by

r _u 1ð Þ ¼ r _u 0ð Þ þ g� n ð23Þ
inside the shear band, where n 2 S denotes the normal to the shear
band and g is an arbitrary vector to be determined. Furthermore,
the rate traction vector is assumed to be continuous across the
band, i.e.,

_r 1ð Þ � _r 2ð Þ� � � n ¼ 0: ð24Þ
By introducing the jumps sr _ut 	 r _u 1ð Þ � r _u 0ð Þ and s _r � nt ¼ 0,

the above kinematical and statical conditions are often summa-
rized as (Rice, 1976)

sr _ut ¼ g� n; s _rt � n ¼ 0: ð25Þ
In the case of an incrementally linear operator Lep such that

_r _eð Þ ¼ Lep : _e, the conditions (25) lead the well-known loss of ellip-
ticity condition

Lep 
 n� nð Þ � g ¼ 0; ð26Þ
where L 
 n� nð Þik ¼ Lijk‘njn‘. The condition (26) is also commonly
referred to as Rice’s criterion for strain localization. While it pro-
vides a sufficient condition in smooth plasticity with two branches,
in the case of an incrementally nonlinear model as (21), such a loss
of ellipticity condition is obtained by linearizing the condition (25)
as pointed out by Petryk (1992). By carrying out the linearization of
(25) near the uniform strain-rate _e 0ð Þ, one has

Q 0ð Þ
ep nð Þ � g ¼ 0; Q 0ð Þ

ep nð Þ 	 Cep _e 0ð Þ� � 
 n� n: ð27Þ

Conditions for bifurcation in a band in the case of incrementally
nonlinear operators have been proposed by Petryk (1992). A suffi-
cient condition for a shear band with orientation n to take place in
a infinite body deforming with r _u 0ð Þ is given by: There exists
nI 2 S such that

det Q 0ð Þ
ep nI
� �� �

6 0; ð28Þ

provided that

U g� nI
� � 	 1

2
g� nI
� �

: Cep g� nI
� �

S

� �
: g� nI
� �

> 0; 8g– 0: ð29Þ
Condition (29) represents a local condition for stability of equi-

librium where the incremental operator is evaluated at the strain-
rate g� nIð ÞS ¼ 1=2ð Þ g� nI þ nI � gð Þ. In this work, we restrict
our analytical and numerical analyses to the loss of ellipticity con-
dition (28). The consideration of the condition (29) will be explored
in future works. In the subsequent sections, Q el denotes the elastic
acoustic tensor given by Q el nð Þ ¼ C 
 n� nð Þ. Furthermore, the
following assumptions are made:

(H1) The material under consideration is isotropic. In this case,
the elastic acoustic tensor is given by
Q el nð Þ ¼ kþ 2lð Þn� nþ l 1½ � � n� nð Þ and its inverse takes
the form
Q�1
el nð Þ ¼ � kþ lð Þ

l kþ 2lð Þn� nþ 1
l

1½ �: ð30Þ

It can also be shown that det Q el nð Þð Þ– 0 for any normal vec-
tor n.
(H2) The hardening matrix H½ � is symmetric. As a result, the
acoustic tensor Q ep and tangent tensor Cep are both symmet-
ric. The interested reader is referred to Petryk (1992) regard-
ing the consequences of these symmetry properties.
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(H3) The number of active mechanisms Mact is such that Mact ¼ 2.
The consequences of this restriction will be highlighted in
Section 3.2.

The case of a single active mechanism, well reported in the lit-
erature (Bigoni and Hueckel, 1991; Besson et al., 2009), is first
recalled in Section 3.1. The case of multiple active mechanisms,
previously studied by Sawischlewski et al. (1996) and Petryk
(2000), is described in Section 3.2. Finally, a numerical procedure
is described in Section 3.3 by relying on the recent algorithm pro-
posed by Al Kotob et al. (2019).
3.1. Case of a single active mechanism

We first assume that the current stress state lies on a smooth
portion of the yield surface, i.e., uK ¼ 0 for some K 2 1; . . . ;mf g.
In this case, the tangent elasto-plastic tensor given by Eq. (22)
reduces to

Cep ¼ C� C : NKð Þ � NK : Cð Þ
vKK þ HKK

; vKK ¼ NK : C : NK : ð31Þ

By injecting the above expression into the acoustic tensor Q ep

and assuming that the hardening modulus decreases with the plas-
tic strain, the highest hardening modulus fulfilling the condition

det Q 0ð Þ
ep nð Þ

� �
¼ 0, referred to as the critical hardening modulus, is

given by Bigoni and Hueckel (1991) and Besson et al. (2009)

Hcrit
K nð Þ ¼ max

n;knk¼1
d nð Þ;Q�1

el nð Þd nð Þ
D E

� NK : C : NK ; ð32Þ

with d nð Þ ¼ C : NKð Þn. Let then NK
j

n o3

j¼1
be the set of entries of NK

on the principal basis. The optimization problem given by Eq. (32)
is equivalent to the maximization of a Lagrangian function, leading
to

nj NK
j

� �2
� 1
1� m

X3
i¼1

n2
i N

K
i

� �
NK

j � b
4l

 !
¼ 0; j 2 1;2;3f g; ð33Þ

where b is a Lagrange multiplier associated to the normalisation

constraint knk2 ¼ 1. Different cases have to be distinguished
depending on the values of n1; n2, and n3 and the following solutions
can be found (see Bigoni and Hueckel (1991)). If n1;n2, and n3 are
non-zero, then the system is indeterminate and there are no solu-
tions. If ni – 0;nj – 0;nk ¼ 0, and ni – nj, then

Hcrit
K nð Þ ¼ �E NK

k

� �2
; n2

i ¼ NK
i þ mNK

k

NK
i � NK

j

; n2
j ¼ 1� n2

i : ð34Þ

In this case, the eigenvector g in Eq. (26) can be decomposed

onto the principal basis as g ¼P3
i¼1gimi �mi where the compo-

nents g1; g2; g3 are given by

gi ¼ NK
i � NK

j

� �
ni; gj ¼ NK

j � NK
i

� �
nj; gk ¼ 0: ð35Þ

Finally, if ni ¼ 1 and nj ¼ nk ¼ 0, then

Hcrit
K nð Þ ¼ �2l

NK
j þ mNK

k

� �2
1� m

þ 1þ mð Þ NK
k

� �20B@
1CA: ð36Þ

As a result, the critical hardening modulus for strain localization
is never strictly positive whenever a single mechanism is active.
5

3.2. Case of multiple active mechanisms

We now consider the case where the current stress state lies on
a corner of the yield surface, resulting in multiple active mecha-
nisms. Using the general expression of Cep given by Eq. (22) for

multisurface plasticity, the acoustic tensor Q 0ð Þ
ep takes the form

Q 0ð Þ
ep nð Þ ¼ Q el nð Þ �

X
J2J

C : NJ
� �

n
� �� ~NJ : C

� �
n

� �
; ð37Þ

where ~NI is defined in Eq. (22). It is worth pointing out that the above
acoustic tensor depends on the strain-rate _e 0ð Þ implicitly through the

set of active mechanisms J. Let Q 0ð Þ
ep nð Þ be the normalized acoustic

tensor defined such that Q 0ð Þ
ep nð Þ ¼ Q el nð ÞQ 0ð Þ

ep nð Þ, that is

Q 0ð Þ
ep nð Þ ¼ 1½ � �

X
J2J

Q�1
el nð Þ C : NJ

� �
n

� �� ~NJ : C
� �

n
� �

: ð38Þ

The determinant of Q 0ð Þ
ep can be written as det Q 0ð Þ

ep nð Þ
� �

¼
det Q el nð Þð Þdet Q 0ð Þ

ep nð Þ
� �

. Let p nð Þ½ � be the Mact �Mact matrix

defined component-wise as

pIJ nð Þ	 NK :Cð Þn;Q�1
el nð Þ NL :Cð Þn

D E
; 16 I; J6Mact; K;Lð Þ 2 J�J;

ð39Þ
where it is recalled that Mact ¼ Card Jð Þ denotes the number of
active yield surfaces. Using the expression of Q�1

el nð Þ, the matrix
p nð Þ½ � defined by Eq. (39) can be rewritten as

pIJ nð Þ ¼ �4l kþ lð Þ
kþ 2l

n;NKnh i n;NLnh i þ 4l NKn;NLnh i: ð40Þ

By analyzing the eigenvalue problem for the update matrix in
Eq. (38), it can be deduced that

det Q 0ð Þ
ep nð Þ

� �
¼ det G

�� 	�1
 !

det G
�� 	

� p nð Þ½ �

 �

; ð41Þ

where it is recalled that G
�� 	

gathers the entries GMN for

M;Nð Þ 2 J� J (see Eq. 22). Petryk (2000) shows that there exist
lower and upper bounds, tl and tu, for the time tI at which a pri-
mary bifurcation in a band takes place. Given our restriction to
the case of at most two active mechanisms, Mact ¼ 2, provided that

H11 > Hcrit
k and H22 > Hcrit

k with Hcrit
k being the critical hardening

modulus in the case of a single active mechanism, the lower and
upper bounds coincide and the theoretical results of Petryk (2000)
simplify to the single condition: Find n 2 S such that

det p nð Þ½ � � G
�� 	
 �

¼ 0; G
�
IJ ¼ NI : C : NJ þ HIJ; I; Jð Þ 2 J� J:

ð42Þ
This loss of ellipticity condition has also been obtained by

Sawischlewski et al. (1996) and Steinmann (1996) for small and
large strains, respectively, by relying on the linearized condition
of loss of ellipticity. However, for Mact > 2, (42) is generally not
necessary for bifurcation in a band according to Petryk (2000). In
summary, in the case considered herein, the detection of material
instabilities consists in two steps:

(a) Solving the problem given by Eq. (42) that yields a normal
vector nI if a solution exists. The associated eigenvector
gI that spans the null space of the acoustic tensor can then
be determined.

(b) Checking if the local condition of equilibrium stability (29)
holds for nI.
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In this study, the analytical and numerical analyses are
restricted to the loss of ellipticity condition (42) while the analysis
of the local stability condition (29) has been left for future works.
In the case of two active mechanisms, Sawischlewski et al.
(1996) provide explicit expressions of the critical hardening mod-

ulus. Recall that the matrix G
�� 	

is given by G
�� 	

¼ v
�h iþ H

�h i
. If

p nð Þ½ � � v
�h i

is invertible, Eq. (42) reduces to

det p nð Þ½ � � v
�h i� H

�h i� �
¼ det p nð Þ½ � � v

�h i� �
þ det H

�h i� �
þ adj p nð Þ½ � � v

�h i� �
: H

�h i
: ð43Þ

In this case, explicit expressions of the critical hardening moduli
are given by Sawischlewski et al. (1996) for a family of matrices

H
�

‘ð Þ
h i

given by

H
�

‘ð Þ
h i

	 H‘ ‘ im½ � þ 1� ‘ð Þ 1½ �ð Þ; ð44Þ

where H‘ is a scalar hardening modulus and im½ �IJ ¼ 1 for all

I; J 2 1; . . . ;Mactf g2. For brevity, only the particular case ‘ ¼ 1 that
will be considered in the sequel of this work is recalled. For ‘ ¼ 1,

it is found that det H
�

‘ð Þ
h i� �

¼ 0 and that Eq. (43) reduces to

det p nð Þ½ � � v
�h i� �

� Hadj p nð Þ½ � � v
�h i� �

: im½ � ¼ 0: ð45Þ

Hence, it can be deduced that the critical scalar hardening mod-

ulus Hcrit is given by

Hcrit ¼ max
knk¼1

p nð Þ½ � � v
�h i� ��1

: im½ �

 ��1

: ð46Þ

The cases ‘ ¼ 0 and ‘ – 1 are reported in C. It should be empha-
sized that the analysis presented in this section is valid under the

constraint that the matrix G
�
‘ð Þ

� 	
given by G

�
‘ð Þ

� 	
¼ v

�h iþ H
�

‘ð Þ
h i

is

nonsingular. For ‘ ¼ 1, the matrix G ‘ð Þ½ � is singular for the harden-
ing modulus

H‘ ¼ �3l; ð47Þ
which is strongly negative.

3.3. Numerical detection of loss of ellipticity in non-smooth plasticity

In this section, the recent algorithm proposed by Al Kotob et al.
(2019) for the detection of loss of ellipticity is specified for multi-
surface plasticity. The algorithm draws on the approach proposed
by Mosler (2005) together with an efficient multistart strategy.
The optimization problem raised by the condition of the onset of
loss of ellipticity is recast into the minimization problem: Find
nI such that

det p nI
� �� � G

�� 	
 �
¼ min

n2S
det p nð Þ½ � � G

�� 	
 �
: ð48Þ

Let then r : S ! R3 be the residual vector defined as

r nð Þ ¼ @

@n
det p nð Þ½ � � G

�� 	
 �
: ð49Þ

For notational convenience, we let ~p �ð Þ½ � ¼ p �ð Þ½ � � G
�� 	

. The fol-

lowing identities will be useful for the developments of this
section:

@ det ~p½ �ð Þ
@ ~p½ � ¼ det ~p½ �ð Þ ~p½ ��1

� �T
;

@ ~p½ ��1

@ ~p½ � ¼ � ~p½ ��1� ~p½ ��1
; ð50Þ
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and the adjugate matrix det ~p½ �ð Þ ~p½ ��1 will be denoted as adj ~p½ �ð Þ. It
can then be deduced that the residual r vector takes the form

r nð Þ ¼ ajd ~p nð Þ½ �ð Þ½ � : @ p nð Þ½ �
@n

; ð51Þ

where the first-order partial derivatives of p nð Þ½ � with respect to n
are given by

@pIJ nð Þ
@n

¼ a1 n;NInh i NJnþ NT
J n

� �
þ a1 n;NJn

� �
NInþ NT

I n
� �

þ a2 NT
I NJnþ NT

J NIn
� �

; ð52Þ

for I; J 2 J� J and with a1 ¼ �4l kþ lð Þ= kþ 2lð Þ and a2 ¼ 4l. The
first-order derivative of r with respect to n is given by

K nð Þ½ � ¼ r nð Þ � r nð Þ
det ~p nð Þ½ �ð Þ � det ~p nð Þ½ �ð Þ @ p nð Þ½ �

@n

: ~p nð Þ½ ��1� ~p nð Þ½ ��1
� �

:
@ p nð Þ½ �
@n

þ ajd ~p nð Þ½ �ð Þ½ �

:
@2 p nð Þ½ �
@n� @n

; ð53Þ

where the second-order partial derivatives of p nð Þ½ � are given by

@2pIJ nð Þ
@n� @n

¼ a1 NInþ NT
I n

� �
� NJnþ NT

J n
� �

þ a1 NJnþ NT
J n

� �
� NInþ NT

I n
� �

þ a1 n;NInh i

� NJ þ NT
J

� �
þ a1 n;NJn

� �
NI þ NT

I

� �
þ a2 NT

I NJ þ NT
J NI

� �
: ð54Þ

Since the normal vector n is normalized, it can be expressed in
terms of polar h1 and azimuthal h2 angles as n ¼ n̂ hð Þ with
n̂ hð Þ ¼ cos h1ð Þ sin h2ð Þ; sin h1ð Þ sin h2ð Þ; cos h2ð Þð Þ in the canonical
basis of R3. Hence, the minimization problem can be rewritten as

det p̂ hI
� �� � v½ � � H½ �� � ¼ min

h2H
det p̂ hð Þ½ � � v½ � � H½ �ð Þ; ð55Þ

with p̂ hð Þ½ � ¼ p n̂ hð Þð Þ½ �. Using the chain rule, the associated residual

vector R̂ : H ! R3 is given by

bRi hð Þ ¼ Dij hð ÞTRj n̂ hð Þð Þ; Dij hð Þ ¼ @n̂i hð Þ
@hj

: ð56Þ

The problem of finding h 2 H such that R̂ hð Þ ¼ 0 is solved with a
Newton–Raphson scheme. Given an initial guess h 0ð Þ 2 H, let h kð Þ for
k P 1 be a sequence such that

k P 0 : bK h kð Þ
� �h i

h kþ1ð Þ � h kð Þ
� �

¼ �R hk
� �

; ð57Þ

where the tangent matrix bKh i
is given component-wise by

bK ij hð Þ ¼ DT
ik hð ÞKkl n̂ hð Þð ÞDlk hð Þ þ bRk hð Þ @Dki hð Þ

@hj
: ð58Þ

Loss of ellipticity is detected at each gauss point of the finite
element using the Newton–Raphson procedure given by Eq. (57).

In practice, a set of initial guesses h 0;sð Þ� �M
s¼1 is first computed by

discretization of the unit sphere. The minimization problem is
solved for each element of this set and the solution hI;s that leads
to the lowest indicator det p n̂ hI;s� �� � v½ � � H½ �� ��

is used to deter-
mine if ellipticity is lost at the considered Gauss point. Using the
solution for the normal vector, nI, the determinant of the acoustic
tensor can be obtained using the relations

det Q 0ð Þ
ep nI
� �� �

¼ det Q el n
I

� �� �
det Q 0ð Þ

ep nI
� �� �

; det Q 0ð Þ
ep nI
� �� �

¼ det 1½ � � G½ ��1 p nI
� �� � �

; ð59Þ
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with det Q el nð Þð Þ ¼ kþ 2lð Þl2 for any normal vector n. It should be
noted that this analysis relies on the tangent elasto-plastic tensor
Cep in the strong formulation of the boundary value problem (see
Eqs. (21) and (22)). In the case of numerical simulations involving
the finite element method and an implicit discretization scheme,
the classical loss of ellipticity analysis of the discretized boundary
value problem can also be achieved by considering the algorithmic
acoustic tensor (Benallal et al., 2010). The numerical procedures
presented by Mosler (2005) and Al Kotob et al. (2019) can be used
for loss of ellipticity analysis of the continuum and discretized
boundary value problems.
4. Family of linear yield criteria in principal stress space

In this work, we focus on a family of yield functions first intro-
duced by Larsson and Runesson (1996) as a family of generalized
Mohr–Coulomb criteria, i.e., a yield function that is a linear combi-
nation of the principal stresses. For instance, the Tresca yield func-
tion which assumes that yielding takes place when the shear stress
reaches a maximum value, belongs to such a family. The twin shear
stress model of Yu (1983) and the more recent mean influence fac-
tor model of Zhang et al. (2020) also consider yield functions that
depend linearly on the principal stresses. The maximum and min-
imum eigenvalues, r1 and r3, are defined as

r1 rð Þ ¼ max z;rzh i jz 2 R3; kzk ¼ 1
� �

; r3 rð Þ
¼ min z;rzh i jz 2 R3; kzk ¼ 1

� �
: ð60Þ

The intermediate eigenvalue r2 rð Þ is given by
r2 rð Þ ¼ Tr rð Þ � r1 rð Þ � r3 rð Þ and hence r1 rð Þ P r2 rð Þ P r3 rð Þ.
By invoking the spectral theorem, the Cauchy stress tensor admits
the decomposition

r ¼ r1 rð Þm1 rð Þ �m1 rð Þ þ r2 rð Þm2 rð Þ �m2 rð Þ
þ r3 rð Þm3 rð Þ �m3 rð Þ; ð61Þ

where m1;m2, and m3 are the eigenvectors associated to the
ordered principal stresses. When no confusion can be made, the
dependence of the principal stresses and principal directions on
the stress tensor will be dropped. We further introduce a vector-
valued parameter a ¼ a1; a2; a3ð Þ that takes its values in a subset C
of R3 to be defined, and such that

X3
i¼1

ai ¼ 0: ð62Þ

We consider the following yield function that is linear in the
principal stresses:

/ r;Rð Þ ¼ a1r1 rð Þ þ a2r2 rð Þ þ a3r3 rð Þ � R: ð63Þ
Using Eq. (62), it can readily be deduced that / is pressure

insensitive, / rþ q1ð Þ ¼ / rð Þ for any q 2 R. Due to this property,
the yield function depends on only two independent parameters.
In addition, it should be noted that the parameter a ¼ a1; a2; a3ð Þ
takes its values in a subset Cconv of R3 that ensures the convexity
of the yield function. The functions r# r1 rð Þ and r# �r3 rð Þð Þ
are both convex but the intermediate principal stress r# r2 rð Þ
is neither convex nor concave. Hence, in the following we shall
restrict ourselves to an admissible set of the form
C ¼ Cconv \ Cinc , where

Cconv ¼ a 2 R3 ja1 > a2 > a3; a1 > 0; a3 < 0
� �

; Cinc

¼ a 2 R3 ja1 þ a2 þ a3 ¼ 0
� �

; ð64Þ

for the parameter a. For simplicity, three particular cases will be
highlighted in the sequel of this paper, namely:
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(C1) Case of the Tresca model obtained for a1 ¼ 1; a2 ¼ 0, and
a3 ¼ �1, that is
/ 0ð Þ r;Rð Þ 	 r1 rð Þ � r3 rð Þ � R: ð65Þ
(C2) Case of a modified Tresca model obtained for

a1 ¼ 1; a2 ¼ �d; a3 ¼ �1þ d, i.e.,

/ dð Þ r;Rð Þ 	 r1 rð Þ � dr2 rð Þ � 1� dð Þr3 rð Þ � R: ð66Þ
with �1 < d < 1=2. This model will be referred to as the d-
Tresca model.
(C3) Case of a modified Tresca model obtained for
a1 ¼ 1� s; a2 ¼ s, and a3 ¼ �1, yielding
/ sð Þ r;Rð Þ 	 1� sð Þr1 rð Þ þ sr2 rð Þ � r3 rð Þ � R; ð67Þ
with �1 < s < 1=2. This model will be referred to as the s-
Tresca model.
These models are illustrated by sketches of the elastic domain
in Fig. 1 for different values of d and s. It can be seen that the
parameter d (resp. sÞ allows for displacing the left corner (resp.
right corner) along the hexagone’s axes. A combination of these
parameterizations results in simultaneous displacements of both
corners. It should be noted that given the assumption of ordered
principal stresses, the yield functions / dð Þ and / sð Þ are distinct
and only the first sextants of the elastic domains depicted in
Fig. 1 are relevant. The twin shear stress model Yu (1983) can also
be recovered by considering the yield function / dð Þ with d ¼ 1=2
(resp. / sð Þ with s ¼ 1=2) as the yield function if r2 6 r1 þ r3ð Þ=2
(resp. if r2 P r1 þ r3ð Þ=2), that is to say,

/ TSSð Þ ¼ r1 � 1
2 r2 þ r3ð Þ � R; r2 6 1

2 r1 þ r3ð Þ;
1
2 r1 þ r2ð Þ � r3 � R; r2 P 1

2 r1 þ r3ð Þ:

(
ð68Þ

Similarly, the recent mean influence factor model Zhang et al.

(2020) can be recovered by taking d ¼ 1� 2
ffiffiffi
3

p
þ

ffiffiffiffiffiffi
13

p� �
=4 and

s ¼ 1� 2
ffiffiffi
3

p
þ

ffiffiffiffiffiffi
13

p� �
=4.

4.1. Flow rule associated to the family of linear yield functions in
principal stress space

In this section, we briefly determine the flow rule associated to
the yield function defined by Eq. (63) for arbitrary values of the
parameter a. Given that the mapping g # / �;Rð Þ is continuously
differentiable, the flow rule (9) reduces to

_ep 2 _c@u rð Þ; _p ¼ _c
@/ r;Rð Þ

@R
; ð69Þ

where u is the canonical yield function defined as

u rð Þ ¼ a1r1 rð Þ þ a2r2 rð Þ þ a3r3 rð Þ
and its subdifferential is defined as

@u rð Þ ¼ A 2 P j/ ~r;Rð Þ P / r;Rð Þ þ A : ~r� rð Þ;8 ~r 2 Sf g: ð70Þ
An explicit expression of the above subdifferential set is

reported in A. Such an expression extends existing results for the
Tresca and Mohr–Coulomb criteria obtained by He et al. (2005)
and Sysala et al. (2017), respectively. In addition, it can be used
to derive an implicit integration scheme but this is out of scope
of this paper and left for further work. The yield function / is dif-
ferentiable whenever the principal stresses are distinct, i.e.,
r1 rð Þ > r2 rð Þ > r3 rð Þ, while it is subdifferentiable whenever
r1 rð Þ ¼ r2 rð Þ P r3 rð Þ or r1 rð Þ P r2 rð Þ ¼ r3 rð Þ. For further
developments, we introduce the following subsets of stresses.
The boundary of the elastic domain is denoted by @E and decom-



Fig. 1. Elastic domains in the deviatoric plane for different values of the parameters d and s. The classical Tresca model (in red) is recovered for d ¼ 0 (or s ¼ 0Þwhile d–0 and
s – 0 modify the positions of the left and right corners along the hexagone’s axes. Here, x1 rð Þ;x2 rð Þ;x3 rð Þ denote the eigenvalues of the stress tensor r without particular
ordering. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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posed as a union of disjoint sets @E ¼ @El [ @Es [ @Er . These sets
correspond to the left corner, smooth portion, and right corner of
the yield surface, that is

@El ¼ r 2 @E jr1 rð Þ � r2 rð Þ ¼ 0; r2 rð Þ P r3 rð Þf g; ð71aÞ
@Es ¼ r 2 @E jr1 rð Þ > r2 rð Þ > r3 rð Þf g; ð71bÞ
@Er ¼ r 2 @E jr1 rð Þ P r2 rð Þ; r2 rð Þ � r3 rð Þ ¼ 0f g: ð71cÞ

The subsets given by Eq. (71) are illustrated for the d-Tresca
model in Fig. 2. These definitions hold for any vector-valued
parameter a 2 C and thus for the three particular cases defined
by Eqs. (65)–(67). We focus on the multisurface form of flow rule
in order to use the loss of ellipticity conditions summarized in Sec-
tion 3. For this purpose, it can be noticed that the elastic domain
can also be defined in terms of the following three yield functions

/1 r;Rð Þ ¼ a1r1 rð Þ þ a2r2 rð Þ þ a3r3 rð Þ � R;

/2 r;Rð Þ ¼ a1r2 rð Þ þ a2r1 rð Þ þ a3r3 rð Þ � R;

/3 r;Rð Þ ¼ a1r1 rð Þ þ a2r3 rð Þ þ a3r2 rð Þ � R:

ð72Þ

This multisurface representation depends on a single yield
stress R and the extension to distinct yield stresses could be con-
sidered in a future work. In the sequel of this section, we shall
denote by NJ the second-order tensors defined as NJ ¼ rr/J , that is

N1 ¼ a1m1 �m1 þ a2m2 �m2 þ a3m3 �m3;

N2 ¼ a2m1 �m1 þ a1m2 �m2 þ a3m3 �m3;

N3 ¼ a1m1 �m1 þ a3m2 �m2 þ a2m3 �m3:

ð73Þ

With the above definitions at hand, the multisurface form of the
flow rule takes the form

_ep ¼
X
J2J

_cJNJ ;
Fig. 2. Elastic domains in the deviatoric plane for different values of the parameter
d together with the subsets @El; @Es , and @Er . Here, x1 rð Þ;x2 rð Þ;x3 rð Þ denote the
eigenvalues of the stress tensor r without particular ordering.
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where it is recalled that J denotes the set of active mechanisms. The
equivalence between the multisurface and subdifferential-based
flow rules is discussed in B based on the developments of
Section 2.2.

4.2. Critical hardening moduli

With the yield function and flow rule now clearly defined, we
are able to analyze under which circumstances loss of ellipticity
may occur. In the sequel of this section, Young’s modulus is set
to E ¼ 210 GPa and unless stated otherwise, the Poisson’s ratio is
chosen as m ¼ 0:3. The aim of this section is to determine the crit-
ical hardening moduli and the associated normals vector n to the
shear bands. The hardening matrix H½ � is assumed to belong to
the family defined by Eq. (C.1) with ‘ ¼ 1. Hence, the evolutions
of the internal variable p and the yield radius R (see Eqs. (15)–
(18)) reduce to

_p ¼
X
J2J

_cJ ; _R ¼ H
X
J2J

_cJ : ð74Þ

Three different situations will be considered, namely, a current
stress state that lies on the smooth portion, left corner, right corner
of the yield surface. For each situation, the three particular cases
described in Section 4 (see Fig. 1) will be illustrated. The case of
the smooth portion of the yield surface is first studied in Sec-
tion 4.2.1. The left and right corners are then addressed in
Section 4.2.2.

4.2.1. Critical hardening modulus on the smooth portion of the yield
surfaces

If the current stress state lies on the smooth portion of the yield
surface, r;Rð Þ 2 @ES, the critical hardening modulus can be

obtained using the results presented in Section 3.1. Let kI be the
index defined such that jakI j ¼ min ja1j; ja2j; ja3jf g. Using Eq. (34),
the critical hardening modulus and the associated normal n are
given by

Hcrit
s ¼ �Ea2kI ; nkI ¼ 0; n2

i ¼ ai þ makI
ai � aj

; n2
j

¼ 1� n2
i ; i; j– kI: ð75Þ

If ni ¼ 1 and nj ¼ nk ¼ 0 for any i 2 1;2;3f g, then the critical
modulus is given by Eq. (36). However, it has been found that this
solution yields less favorable critical hardening moduli.

(C1) In the particular case of a Tresca model, that is a1 ¼ 1; a2 ¼ 0,
and a3 ¼ �1, the most favorable critical hardening modulus

Hcrit
0;s and the normal vector ncrit

0;s are given by



Fig. 3. G
the valu
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Hcrit
0;s ¼ 0; ncrit

0;s ¼ 1ffiffiffi
2

p
�1
0
�1

264
375

mið Þ3i¼1

; ð76Þ

meaning that the shear band is oriented with a 45
 angle in
the plane spanned by m1;m3ð ).
(C2) In the case of the d-Tresca model, it is found that akI ¼ a2

and thus akI ¼ �d for any d 2� � 1;1=2½. The first possible

critical hardening modulus is given by Hcrit
d;s ¼ �Ed2 and the

associated normal vector ncrit
d;s can be written as

ncrit
d;s ¼ cos hð Þ;0; sin hð Þð Þ in the principal stress basis. In sum-

mary, the following solutions are found for the critical hard-
ening modulus and the normal vector:
Hcrit
d;s ¼ �Ed2; ð77Þ

ncrit
d;s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2� d
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� md

p

0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d 1� mð Þp
264

375
mið Þ3i¼1

or

ncrit
d;s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2� d
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d 1� mð Þp

0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� md

p

264
375

mið Þ3i¼1

:

ð78Þ

Graphs of the mappings d # h1 dð Þ and d# h2 dð Þ associated to
the above normal vectors are shown in Fig. 3 for selected val-
ues of Poisson’s ratio m 2 0:1;0:5½ �. It can easily be verified
that 1� md > 0 and 1� d 1� mð Þ > 0 for any m 2 0;0:5½ � and
d 2� � 1;1=2½.
(C3) In the case of the s-Tresca model with
a1 ¼ 1� s; a2 ¼ s; a3 ¼ �1, one has akI ¼ s. Similarly to Eq.

(77), it follows that the critical hardening modulus Hcrit
s;s is

given by
Hcrit
s;s ¼ �Es2; ð79Þ

and the possible normal vectors take the forms

ncrit
s;s

1ffiffiffiffiffiffiffiffiffiffiffiffi
2� s

p ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s 1� mð Þp
0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ms

p

264
375

mið Þ3i¼1

or

ncrit
s;s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2� s
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ms

p

0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s 1� mð Þp
264

375
mið Þ3i¼1

:

ð80Þ

Similar graphs of the associated angles h1 and h2 are obtained
as those given by the right and left panel of Fig. 3, respec-
tively. From the previous developments, it follows that
raphs of the angles d # h1 dð Þ and d # h2 dð Þ formed by the two possible normal vectors to
e of the Poisson ratio.

9

1� ms > 0 and 1� s 1� mð Þ > 0 for any m 2 0;0:5½ � and
s 2� � 1;1=2½.
As a result, it can be deduced that the standard Tresca model
leads to the largest critical hardening modulus whenever the stress
tensor lies on the smooth portion of the yield surface. In the next
section, the same analysis is performed on the corners of the yield
surface.

4.2.2. Critical hardening moduli on the corners of the yield surface
If the current stress state lies on a corner of the yield surface,

then the critical hardening modulus can be obtained using the
developments of Section 3.2. In this section, we first assume that
the stress state lies on the right corner (see Eq. (71) and Fig. 2).
In this case, the set of active mechanisms J is given by J ¼ 1;3f g.
The hardening matrix Hr½ � denotes the restriction of H½ � when the
stresses lie on the right corner of the yield surface, i.e.,

Hr½ � ¼ H i2½ �; i2½ � ¼ 1 1
1 1

� 	
: ð81Þ

The matrix G
�� 	

involved in Eq. (42) takes the form

G
�� 	

¼ v
�h iþ Hr½ � where

v
�h i ¼ N1 : C : N1 N1 : C : N3;

N3 : C : N1 N3 : C : N3:

� 	
¼

2l
a21 þ a22 þ a23 a21 þ 2a2a3
a21 þ 2a2a3 a21 þ a22 þ a23

" #
:

ð82Þ

Let NK
i ;N

L
i and ni be the components of NK ;NL, and n in the prin-

cipal stress basis m1;m2;m3ð Þ. From Eq. (40), it is deduced that the
entries of the matrix p nð Þ½ � on an arbitrary corner can be written as
p̂IJ n1;n2;n3ð Þ ¼ pIJ nð Þ with

p̂IJ n1;n2;n3ð Þ ¼ �4l kþ lð Þ
kþ 2l

X3
i¼1

n2
i N

K
i

X3
j¼1

n2
j N

L
j

þ 4l
X3
i¼1

NK
i N

L
i n

2
i ; n

¼
X3
k¼1

nkmk: ð83Þ

On the right corner of the yield surface, the eigenvalues of N1

and N3 are given by a1; a2; a3ð Þ and a1; a3; a2ð Þ, respectively. For
brevity, the entries (83) for an arbitrary normal vector n are not

listed herein. Given the matrices p nð Þ½ � and v
�h i

, the critical harden-

ing modulus can be computed via Eq. (46) provided that
the shear band on the smooth portion of the yield surface, and depending on
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p nð Þ½ � � v
�h i

is non-singular. However, for selected normal vectors

n listed below, it is found that p nð Þ½ � � v
�h i

is singular and thus

non-invertible. For these selected normals, closed-form expres-

sions of the determinant of p nð Þ½ � � G
�� 	

can be obtained:

det p nð Þ½ � � G
�� 	
 �

¼Hl 3kþ 5l
kþ 2l a1 þ 2a3ð Þ2; if n2

1 ¼ n2
2 ¼ 1

2
; n3 ¼ 0; ð84aÞ

det p nð Þ½ � � G
�� 	
 �

¼Hl 3kþ 5l
kþ 2l

a1 þ 2a3ð Þ2; if n2
1 ¼ n2

3 ¼ 1
2
; n2 ¼ 0; ð84bÞ

det p nð Þ½ � � G
�� 	
 �

¼0; if n2
2 ¼ n2

3 ¼ 1
2
; n1 ¼ 0: ð84cÞ

It follows that the hardening modulus H : n # R such that

det p nð Þ½ � � v
�h i� H nð Þ i2½ �

� �
¼ 0 is given by

H nð Þ ¼

0; if n2
1 ¼ n2

2 ¼ 1
2 ; n3 ¼ 0;

0; if n2
1 ¼ n2

3 ¼ 1
2 ; n2 ¼ 0;

h 2 R; if n2
2 ¼ n2

3 ¼ 1
2 ; n1 ¼ 0;

p nð Þ½ � � v
�h i� ��1

: i2½ �

 ��1

; else:

8>>>>>><>>>>>>:
ð85Þ

Fig. 4 shows the graph of n# H nð Þ for normal vectors n such
that n ¼ cos hð Þ;0; sin hð Þð Þ or n ¼ cos hð Þ; sin hð Þ;0ð Þ. It is found that
this hardening modulus only depends on a1 amongst the three
parameters a1; a2, and a3. Left panel of Fig. 5 shows graphs of the

determinant of the normalized acoustic tensor Q 0ð Þ
ep for stresses

on the right corner of the yield surface with respect to the normal-
ized hardening modulus H nð Þ � E�1. The right panel of Fig. 5 shows
the minimum value of the same determinant obtained with the
algorithm described in Section 3.3. It follows that the critical hard-

ening modulus Hcrit
r and the associated normal ncrit

r defined such

that it yields a singular acoustic tensor Q 0ð Þ
ep is given by

Hcrit
r 2 0;þ1 ; ncrit

r ¼
� 1ffiffi

2
p m2 �m3ð Þ; if Hr P 0;

� 1ffiffi
2

p m1 �m2ð Þor� 1ffiffi
2

p m1 �m3ð Þ; if Hr ¼ 0;

(""
ð86Þ

where the eigenvectors m2 and m3 are arbitrary unit vectors
orthogonal to m1. Similar results are obtained for stresses on the
Fig. 4. Graph of the hardening modulus n # H nð Þ such that
det p nð Þ½ � � v

�h i� H nð Þ i2½ �
� �

¼ 0 for selected families of the normal vectors n a
few values of a1 > 0.
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left corner of the yield surface. The critical hardening modulus

Hcrit
l and the associated normal vector ncrit

l are found to be such that

Hcrit
l 2 0;þ1 ; ncrit

l ¼
� 1ffiffi

2
p m1 �m2ð Þ; if Hl P 0;

� 1ffiffi
2

p m2 �m3ð Þor� 1ffiffi
2

p m1 �m3ð Þ; if Hl ¼ 0:

(""
ð87Þ

As a result, on the corners of the yield surface, the linearized loss of
ellipticity condition (27) and the condition (42) are fulfilled for any
positive hardening modulus. In addition, the condition (28) is ful-
filled for any strictly negative hardening modulus, i.e., for softening
behaviors.

5. Numerical examples

In this section, finite element simulations are performed in
order to illustrate the proposed analysis. For simplicity, only the
d-Tresca model will be considered. Three different geometries are
introduced, namely, a cube in Section 5.1, and a thin plate that
measures L ¼ 12 mm in height, L=3 mm in width, and is L=6 mm
thick in Section 5.2. Finally, an experimental tubular specimen is
considered in Section 5.3. The geometries are discretized with
20-noded hexahedral elements and a reduced integration scheme
is used within each element to reduce locking phenomena. Finite
element meshes of the geometries are shown in Fig. 6. Finite ele-
ment simulations are performed with the non-linear material
and structure analysis suite Zset ( http://zset-software.com/). A
nonlinear hardening function p̂# R p̂ð Þ is chosen as

R p̂ð Þ ¼ R0 þ Sp̂þ Q 1� exp �bp̂ð Þð Þ;
for which the hardening modulus p̂# H p̂ð Þ 	 dR p̂ð Þ=dp̂ takes the
form

H p̂ð Þ ¼ Sþ Qb exp �bp̂ð Þ: ð88Þ
In the above equations, R0 is a constant yield stress, Q, and b are

two hardening parameters chosen as

R0 ¼ 1000MPa; Q ¼ 100MPa; b ¼ 300

and the linear hardening modulus S is given by

S ¼ �1000MPa:

Young’s modulus and Poisson’s ratio are set to E ¼ 210;000 MPa
and m ¼ 0:3. Imperfections are inserted by imposing a reduced
yield stress R00 ¼ 999:0 MPa in chosen elements of the cube and
thin plate. The objective of the imperfection is to fix the location
of the strain localization band which will form and avoid complex
interactions with the boundaries. In the rest of this section, local-
ization and loss of ellipticity are studied for various plastic thresh-
olds and the considered three geometries. The implicit integration
scheme used for the time integration of the elasto-plastic constitu-
tive problem is reported in D.

5.1. Softening cube undergoing tension

We start by comparing the results obtained with a cube using
the Tresca and von Mises yield functions. A vertical displacement
ud is applied to the top edge and boundary conditions at the bot-
tom of the cube are such that tensile homogeneous deformations
take place in the elastic regime. In this setting, we expect the stress
state to lie on the right corner of the yield surface at most Gauss
points of the finite element mesh. The parameter S in Eq. (88) is
chosen as S ¼ �1000 MPa in order to enforce a slightly softening
behavior.

Fig. 7 shows the reaction forces on the top surface of the cube
for six different plastic thresholds, namely, for the von Mises,
Tresca, and d-Tresca model with four different values of the param-

http://zset-software.com/


Fig. 5. Graphs of the determinant of normalized the acoustic tensor with respect to the hardening modulus for stresses on the right corner of the yield surface.

Fig. 6. Finite element meshes of the cube (using 10 elements in each direction) and thin plate (using 80, 240, and 4 quadratic elements along the width, height, and thickness,
respectively), and geometry of the tubular specimen taken from (Defaisse et al., 2018 and Al Kotob et al. (2019)).
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eter d. In addition, in Fig. 7, the prescribed deformation eE for which
loss of ellipticity occurs for the first time in the finite element mesh
is shown. The first occurrence of lost of ellipticity is obtained as fol-
lows. At each time step, the minimum of the loss of ellipticity indi-
cator over all the Gauss points is computed. This minimum value is
considered to be negative as soon as it gets lower than or equal to
�10�14. The prescribed deformation eD for which the resultant
force reaches its maximum value is also given. In the case of the
von Mises model, it is seen that loss of ellipticity occurs well after
the resultant force has reached its maximum value. In contrast, in
the case of the d-Tresca models with d 2 �0:2;�0:1;0:0;0:1;0:2f g,
it is observed that loss of ellipticity occurs slightly before the max-
imum resultant force. In Fig. 8, the graph of the minimum value of
the loss of ellipticity indicator is shown with respect to the pre-
scribed deformation ud=L. The minimum is taken over all the Gauss
points of the finite element mesh. A value equal to 1 means that
ellipticity has not decreased. It can be seen that the indicators sud-
denly decrease as soon as the cube plastifies. In the case of the von
Mises model, the indicator drops to a positive value then smoothly
decreases. In contrast, in the case of the Tresca model, the indicator
directly drops to zero then smoothly decreases towards negative
values. This numerical observation can be explained by means of
Eq. (86). Indeed, on the right corner of the Tresca yield function,
we expect the acoustic tensor to be singular as soon as the material
plastifies.
11
Fig. 9 shows that strain remains almost homogeneous using the
von Mises criterion, whereas strain localization bands tend to form
according to Tresca and d-Tresca criteria. The same fields are
shown in Fig. 10 in the case of the Tresca model. In contrast to
the von Mises model, a distinctive strain localization band forms
on the top surface of the cube. The indicator of loss of ellipticity
decreases where localization occurs.

It is well-known that loss of ellipticity for von Mises plasticity
under tension can only occur for a very low value of softening
modulus, namely �E=4, as discussed by, e.g., Besson et al. (2009).
Here, the presence of an imperfection leads to a heterogeneous
deformation field and loss of ellipticity occurs even in the case of
the von Mises model. However, it occurs for a much larger pre-
scribed displacement and much higher deformations that are unre-
alistic under the assumptions of small strains.

5.2. Thin softening plate undergoing tension

In this second illustration, we consider the case of a thin plate.
The boundary conditions are the same as in the case of the cube
addressed in the previous section, namely, there are such that
homogeneous simple tension takes place in the absence of localiza-
tion. The parameter S in Eq. (88) is chosen as S ¼ �1000 MPa as in
the previous section. The resultant forces on the top surface of the
plate are shown in Fig. 11 for the von Mises and d-Tresca models.



Fig. 7. Cube undergoing simple tension: graphs of the force resultant R with respect to the prescribed deformation ud=L with L ¼ 4 mm. The deformations eE and eR
correspond to: the first occurrence of loss of ellipticity and to when R reaches its maximum value.

Fig. 8. Cube undergoing simple tension: graph of minimum value of the loss of
ellipticity indicator over the Gauss points of the finite element meshes, with respect
to the prescribed deformation ud=L with L ¼ 4 mm .
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As in the case of the cube, loss of ellipticity occurs late after the
resultant force has reached its maximum value for the von Mises
model. In contrast, for all the d-Tresca models, loss of ellipticity
takes place slightly before the maximum reaction force. In addi-
tion, it can be seen that loss of ellipticity is slightly postponed as
d increases. Views of the cumulative plastic strain field in
the case of a Tresca model are shown in Fig. 12. The localization
band is found to be inclined across both the thickness and
width. To explain this numerical result, we refer to Eq. (86) which
shows that on the right corner of the Tresca yield surface, we may
have

det Q ep n xð Þð Þ� � ¼ 0; n ¼ 1ffiffiffi
2

p
0
�1
�1

264
375

mið Þ3i¼1

; 8H p xð Þð Þ 2 0;þ1 ;½½

ð89Þ
or

det Q ep n xð Þð Þ� � ¼ 0; n xð Þ ¼ 1ffiffiffi
2

p
�1
�1
0

264
375

mið Þ3i¼1

or

n xð Þ ¼ 1ffiffiffi
2

p
�1
0
�1

264
375

mið Þ3i¼1

;

ð90Þ
12
for H p xð Þð Þ ¼ 0 at any point x in deformed configuration. If it is
assumed that in this scenario of simple tension the eigenvalues

mif g3i¼1 coincide with the canonical basis ex; ey; ez
� �

of R3, then Eq.
(89) means that a flat shear band across the plate’s width may take
place as well. Similarly, Eq. (90) states that an inclined shear band in
the planes spanned by ex; ey

� �
or ex; ezð Þ may take place. However, it

should be emphasized that the eigenvectorsm2 andm3 can be arbi-
trary vectors than span the space orthogonal to the linear space
am1;a 2 Rf g, hence leading to the observed shear band in Fig. 12.
As a comparison, in the case of a von Mises model, the shear band
would also be inclined across the plate’s width but flat across the
thickness of the plate. In the latter case, necking takes place within
the thickness of the band and no loss of ellipticity occurs.

To end this section, Fig. 13 shows the loss of ellipticity indica-
tors in the case of various plastic thresholds. Similar results are
obtained in most cases expect for the d-Tresca model with
d ¼ �0:2 and the von Mises model. For the latter, it is not surpris-
ing that ellipticity is not lost at ud=L � 0:0175 since loss of elliptic-
ity occurs for ud=L P eE with eE > 0:0175 (see Fig. 11). In the case of
the d-Tresca model with d ¼ �0:2, it is found that a flat shear band
takes place across the plate’s width. We infer that for d ¼ �0:2, we
obtained a shear band orientation n with entries n1 ¼ 0;n2

2 ¼ n2
3 in

the principal basis (that may coincide with the canonical basis).
5.3. Experimental tubular specimen undergoing tension and torsion

In this last section, we consider the experimental tubular spec-
imen shown in Fig. 6(c). The objective of this example is to show
that the proposed analysis is applicable to realistic experimental
samples under complex loading conditions. Three different bound-
ary value problems are considered. The first one consists in a pure
torsion test where a relative rotation h is applied to the top and
bottom surfaces. The second configuration is a simple tension test
where a vertical displacement is applied to the top surface. And
finally, the third scenario is obtained by combining these tension
and torsion tests. As in the previous numerical illustrations, a
slightly softening behavior is enforced by taking S ¼ �1000 MPa
(see Eq. (88)). However, in contrast to the previous cases in Sec-
tions 5.1 and 5.2, no imperfection is inserted in the finite element
mesh. The following subsections comment the finite element sim-
ulations displayed in Fig. 15 (pure torsion), Fig. 16 (simple tension),
Fig. 17 (combined torsion-tension). All the snapshots were taken at
the time-step at which ellipticity is lost for the first time during the
simulations. The reader is referred to Fig. 14 where graphs of the
resultant moments and forces are shown, together with the first
occurrences of loss of ellipticity. The results can be compared to
the corresponding experimental data provided by Defaisse et al.



Fig. 9. Cumulative plastic strain x# p xð Þ (first row) and loss of ellipticity indicator x # infn xð Þ2S det Q ep n xð Þð Þ� �
(second row) in the case of a von Mises model at three overall

strain levels indicated in Fig. 7(a).

Fig. 10. Cumulative plastic strain x # p xð Þ (first row) and loss of ellipticity indicator x # infn xð Þ2S det Q ep n xð Þð Þ� �
(second row) in the case of a Tresca model at four overall

strain levels indicated in Fig. 7(b).
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(2018) for ultra-high strength steel which does not exhibit signifi-
cant damage prior to shear band localization and final fracture. It is
proposed that Tresca-like constitutive models would be more suit-
able than the standard von Mises criterion to capture these local-
ization events.

5.3.1. Experimental tubular specimen undergoing pure torsion
Graphs of the resultant moment with respect to the rotation

angle are shown in the left panel of Fig. 14 in the case of pure tor-
13
sion, and snapshots of the cumulative plastic strains and loss of
ellipticity indicators are provided in Fig. 15. In this scenario, the
stress tensor lies on the smooth portion of the d-Tresca yield sur-
faces. It can be observed that the Tresca and von Mises models lead
to loss of ellipticity almost simultaneously when the resultant
moment reaches its maximum value. This is due to the fact that
their normals to the yield surfaces and critical hardening moduli
coincide in pure shear. In contrast, the d-Tresca models with
d ¼ �0:2 or d ¼ 0:2 allow for postponing loss of ellipticity. These



Fig. 11. Tension of a thin plate: graphs of the force resultant R=S with respect to the prescribed deformation ud=L. The prescribed deformations eE and eR correspond to: the
first occurrence of loss of ellipticity and to when R reaches its maximum value.

Fig. 12. Cumulative plastic strain field in a Tresca plate for ud=L � 0:0175. Three views of the plate are shown (from left to right): front view, side view, and clipped view
inside the plate.
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observations are in agreement with the analysis carried out in
Section 4.2.1.

5.3.2. Experimental tubular specimen undergoing simple tension
Graphs of the resultant force with respect to the prescribed

displacement are shown in the right panel of Fig. 14. As in
the previous examples, it can be seen that the Tresca and d-
Tresca models lose ellipticity earlier than the von Mises model.
The d-Tresca and von Mises model exhibits similar cumulative
14
plastic strain fields and loss of ellipticity indicators as it can
be seen in Fig. 16. The Tresca test tube plastifies in a similar
fashion but with different magnitudes. Note that these snap-
shots are taken when the structure loses ellipticity for the first
time during simulation and for further time steps, the three
models exhibit different localization bands. The von Mises
model was expected to remain elliptic but due to the geometry,
the material does not undergo simple tension, even in the
region of interest.



Fig. 13. Tension of a thin plate: loss of ellipticity indicators for various plastic models and a prescribed displacement ud=L � 0:0175.

Fig. 14. Simple tension and pure torsion of a tubular specimen. Red bullets indicate loss of ellipticity and blue squares point out the maximum load. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Pure torsion test: cumulative plastic strain (top row) and loss of ellipticity indicator infn det Q ep nð Þ� �
(bottom row) when ellipticity is lost for the first time during the

simulations (Fig. 14(a)).
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Fig. 16. Simple tension: cumulative plastic strains (top row) and loss of ellipticity indicator infn det Q ep nð Þ� �
(bottom row) when ellipticity is lost for the first time during the

simulations (Fig. 14 (b)).

Fig. 17. Combined tension–torsion: cumulative plastic strains (top row) and loss of ellipticity indicator infn det Q ep nð Þ� �
(bottom row) when ellipticity is lost for the first time

during the simulations.
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5.3.3. Experimental tubular specimen undergoing combined torsion-
tension

In this last scenario, a 1 mm vertical prescribed displacement
and a 10
 rotation along the test tube axis are applied to the top
surface. Snapshots of the cumulative plastic strain fields and the
16
loss of ellipticity indicators are shown in Fig. 17. The von Mises
model loses ellipticity for ud ¼ 0:0396mm and h ¼ 0:396
, while
the Tresca and d-Tresca model lose ellipticity at times for
ud ¼ 0:0275mm, h ¼ 0:275
, and ud ¼ 0:0275mm, h ¼ 0:273
,
respectively. Each model exhibit similar localization patterns but
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with different magnitudes. While the von Mises model tends to
localize on the inner surface of the specimen, the Tresca model
localizes on the outer surface. The d-Tresca seems to stabilize the
simulation as it leads to lower cumulative plastic strains when
ellipticity is lost.
6. Conclusion

This work is concerned with the analysis of ellipticity when
dealing with non-smooth yield surfaces. Towards this end, we con-
sider a class of yield functions that are given by a linear combina-
tion of the principal stresses. In principal stress space, yield
functions belonging to such a family are non-smooth as they
include two sharp corners on their surfaces, referred to as the left
and right corners. For simplicity, three particular cases are consid-
ered, namely, the Tresca, d-Tresca, and s-Tresca models. The
parameters d and s allow for modifying the positions and the shape
of the corners. The following findings are made:

(a) The corners on the yield surface have a significant effect on
the conditions for loss of ellipticity, i.e., they strongly affect
the critical hardening modulus. In order to better under-
stand this phenomenon, two new parametric families of
yield functions are introduced. The parameter d (resp. s) in
the d-Tresca (resp. s-Tresca) model allows for increasing or
decreasing the angle formed by the right corner (resp. left
corner) of the yield surface. It is found that the presence of
such corners lead to loss of ellipticity as soon as the harden-
ing modulus vanishes.

(b) A numerical procedure for the detection of loss of ellipticity
in multisurface plasticity is obtained by combining the
recent algorithm proposed by Al Kotob et al. (2019) and
the works of Petryk (2000) and Sawischlewski et al.
(1996). This numerical approach is used to determine the
critical hardening moduli for the considered non-smooth
yield function and to detect loss of ellipticity in finite ele-
ment simulations.

(c) An explicit expression of the subdifferential of the non-
smooth yield function is derived and generalize recent
expressions obtained in the cases of the Tresca (He et al.,
2005) and Mohr–Coulomb (Sysala et al., 2017) models. This
expression allows for expressing the flow rule in an abstract
compact form and can be used for deriving an implicit inte-
gration algorithm.

(d) Finite element simulations on simple geometries undergo-
ing simple tension show that the Tresca and d-Tresca models
lead to loss of ellipticity much earlier than the commonly
used von Mises model. More specifically, the von Mises
model loses ellipticity for unrealistic deformations that are
out of the range of the small perturbations assumption. In
contrast, the Tresca and d-Tresca models may lose ellipticity
for much lower deformations.

(e) Finite element simulations on a realistic structure show that
the choice of the yield function can lead to drastic differ-
ences in terms of localization and loss of ellipticity. In all
cases, it is seen that the non-smooth yield functions lose
ellipticity earlier than the von Mises model and they also
lead to different localization patterns and localization
magnitudes.

These findings suggest that the choice of the yield function, and
its smoothness, is of primary importance for structural computa-
tions. Strain localization observed in many engineering alloys
(Defaisse et al., 2018; Al Kotob et al., 2019) can lead to slant frac-
ture that cannot be properly described by existing ductile fracture
17
models. The von Mises model and more generally smooth yield
functions that are used in the industry, do not properly account
for such localizationmodes under tension. We anticipate that more
realistic models should incorporate corners, emerging from poly-
crystal plasticity. As demonstrated in the present work, such mod-
els can predict earlier strain localization events.

In future works, it is planned to study the influence of kinematic
hardening on material instabilities, incorporate large deformation
in the present analysis, and investigate the influence of corners
in polycrystal plasticity.
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Appendix A. Subdifferential set for the family of yield criteria
linear in principal stresses

In this section, an explicit expression of the subdifferential set
@u (70) is provided for the yield function defined by Eq. (63). To
the authors’ best knowledge, such expressions are only available
for the Tresca (He et al., 2005) and Mohr–Coulomb (Sysala et al.,
2017) models. Based on the previous work of Vallée et al. (2006),
two approaches are presented by He et al. (2005), namely, a direct
approach that starts from the definition (70), and an indirect
approach that uses corollary results of convex analysis (van Tiel,
1984; Ruszczyński, 2006). In the work of Sysala et al. (2017), the
expression of the subdifferential set is obtained starting from its
definition (70) in the case of a Mohr–Coulomb criterion. Here, we
adopt an indirect approach. The canonical yield function (63) can
be rewritten as

u rð Þ ¼ a1 � a2ð Þr1 rð Þ þ a2Tr rð Þ þ a2 � a3ð Þ �r3 rð Þð Þ; ðA:1Þ
where it is recalled that a1 > 0; a3 < 0; a1 > a2 > a3, and
r1 rð Þ P r2 rð Þ P r3 rð Þ. According to Vallée et al. (2006) and
Ruszczyński, 2006, the functions r# r1 rð Þ and r# �r3 rð Þð Þ are
both convex. The yield function (A.1) being given by a sum of three
convex functions, it can be deduced (van Tiel, 1984; Ruszczyński,
2006) that its subdifferential takes the form

@u rð Þ ¼ a1 � a2ð Þ@rr1 rð Þ þ a2@rTr rð Þ
þ a2 � a3ð Þ@r �r3 rð Þð Þ: ðA:2Þ

The subdifferential set of the largest eigenvalue is given by
(Vallée et al., 2006; Ruszczyński, 2006)

@r1 rð Þ ¼ n ¼
X3
i¼1

nimi �mi jn : r ¼ r1 rð Þ; Tr nð Þ ¼ 1

( )
; ðA:3Þ

and can be reduced to

@r1 rð Þ ¼

n ¼
X3
i¼1

nimi �mi j r1 � r2ð Þ n1 � 1ð Þ þ r2 � r3ð Þ �n3ð Þ ¼ 0; Tr nð Þ ¼ 1

( )
:

ðA:4Þ
The subdifferential of the smallest eigenvalue is such that

@r �r3 rð Þð Þ ¼ �@rr1 �rð Þ. Using Eq. (A.3) and the relationship
r1 �rð Þ ¼ �r3 rð Þ, it can be deduced that
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@ �r3 rð Þð Þ ¼

g ¼
X3
i¼1

gimi �mi j r1 � r2ð Þg1 þ r2 � r3ð Þ �1� g3ð Þ ¼ 0; Tr gð Þ ¼ �1

( )
:

ðA:5Þ
Finally, the function r# Tr rð Þ is smooth and its subdifferential

is given by the singleton If g containing the identity tensor. It fol-
lows that any tensor W 2 @/ r;Rð Þ is given by

W ¼ a1 � a2ð Þnþ a2
X3
i¼1

mi �mi þ a2 � a3ð Þg; n

2 @r1 rð Þ; g 2 @ �r3 rð Þð Þ: ðA:6Þ
A compact expression of the subdifferential set can be obtained

by noticing that the coefficients W1;W2;W3 such that

W ¼P3
i¼1Wimi �mi satisfy

r1 � r2ð Þ W1 � a1ð Þ þ r2 � r3ð Þ a3 �W3ð Þ
¼ 0; W1 þW2 þW3 ¼ a1 þ a2 þ a3: ðA:7Þ
Hence, Eq. (A.2) is also given by

@u rð Þ

¼ N ¼
X3
i¼1

Nimi �mi j r1 � r2ð Þ N1 � a1ð Þ þ r2 � r3ð Þ a3 � N3ð Þ ¼ 0; Tr Nð Þ ¼
X3
i¼1

ai

( )
:

ðA:8Þ

Using either Eq. (A.2) or Eq. (A.8) and by considering stress ten-
sors on the smooth portion, left corner, or right corner of the yield
surface, it can be verified that the abstract flow rule _ep 2 _c@u rð Þ is
equivalent to the multisurface flow rule presented in B.

Appendix B. Multisurface flow rule

We propose to deduce the multisurface form of the flow rule
_ep ¼PJ2J _cJNJ (see Section 4.1) from the subdifferential-based flow
rule _ep 2 _c@u rð Þ (see Eq. (69)). Following Section 2.2, we let
l1;l2;l3 be three positive real numbers, and we introduce the
auxiliary yield function ~u defined as

~u rð Þ ¼ l1u1 rð Þ þ l2u2 rð Þ þ l3u3 rð Þ: ðB:1Þ
In order to determine possible sets of values for l1;l2;l3 such

that ~u rð Þ ¼ u rð Þ, four cases have to be distinguished depending
on the current values of the principal stresses:

(a) If r lies in the interior of the elastic domain, then ~u rð Þ < R
regardless of the values of l1;l2, and l3.

(b) If r 2 @Es, then u1 rð Þ ¼ R. Hence, it can be deduced that
u rð Þ ¼ ~u rð Þ for l1 ¼ 1;l2 ¼ 0, and l3 ¼ 0. It follows that
the subdifferential set @u is given by
@u rð Þ ¼ @u1 rð Þ; ðB:2Þ
and thus _ep ¼ l1 _c@u1 rð Þ. Given that the mapping
r# /1 r; �ð Þ is differentiable, the set @u1 rð Þ reduces to the
singleton N1f g. Based on this result, the flow rule takes the
form

_ep ¼ _c1N1; _c1 	 _c: ðB:3Þ
(c) If r 2 @El, then u1 rð Þ ¼ R and u2 rð Þ ¼ R. It follows

that u rð Þ ¼ ~u rð Þ for l1 P 0 and l2 P 0 such that
m1 þm2 ¼ 1, and l3 ¼ 0. In this case, the subdifferen-
tial set @u can also be written as

@u rð Þ ¼ l1@u1 rð Þ þ l2@u2 rð Þ; l1 þ l2 ¼ 1: ðB:4Þ
Hence, it can be deduced that the flow rule takes the form

_ep ¼ _c1N1 þ _c2N2; _c1 	 l1 _c; _c2 	 l2 _c; ðB:5Þ
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with

_c ¼ _c1 þ _c2:

(d) Finally, if r 2 @Er , one has u1 rð Þ ¼ R and u3 rð Þ ¼ R.
Hence, u rð Þ ¼ ~u rð Þ for any l1 P 0 and l3 P 0 such
that l1 þ l3 ¼ 1, and l2 ¼ 0. The subdifferential set
@u can be additively decomposed as

@u rð Þ ¼ l1@u1 rð Þ þ l3@u3 rð Þ; l1 þ l3 ¼ 1; ðB:6Þ
where @u3 ¼ N3f g. The flow rule _ep 2 _c@u then takes the
form

_ep ¼ _c1N1 þ _c3N3; _c1 	 l1 _c; _c3 	 l3 _c; ðB:7Þ
with

_c ¼ _c1 þ _c3:
In summary, the flow rule can equivalently be written as

_ep 2 _c@u rð Þ;
and

_ep ¼
X
J2J

_cJNJ ; _cJ ¼ _clJ;
X
J2J
lJ ¼ 1:

As a result, it is always possible to find a triplet l1;l2;l3

� �
of

positive scalars such that u rð Þ ¼P3
j¼1ljuj rð Þ for all r 2 M3

S . It
can also be seen that this result leads to an equivalence between
the abstract flow rule given by Eq. (9) and the multisurface flow
rule given by Eq. (15). One advantage of the subdifferential-based
flow rule is that it can lead to a simpler fully implicit integration
scheme as shown by Sysala et al. (2016) for Mohr–Coulomb plas-
ticity. It should be emphasized that for a1 ¼ 1; a2 ¼ 0, and
a3 ¼ �1, the multisurface and subdifferential flow rule of the
Tresca yield function are recovered (de Souza Neto et al., 2011;
He et al., 2005).

Appendix C. Explicit expressions of the critical hardening
moduli in the case of two active mechanisms

This appendix summarizes explicit expressions of critical hard-
ening moduli obtained by Sawischlewski et al. (1996) for a family
of matrices H ‘ð Þ½ � given by

H ‘ð Þ½ � 	 H‘ ‘ im½ � þ 1� ‘ð Þ 1½ �ð Þ; ðC:1Þ
where H‘ is a scalar hardening modulus and im½ �IJ ¼ 1 for all

I; J 2 1; . . . ;Mactf g2. These results are valid in the simplest case of
two active mechanisms. Three cases can be distinguished.43

(b) For ‘ ¼ 0, it is found that
H2
0 � H0 adj p nð Þ½ � � v½ �ð ÞÞ : 1½ � þ det p nð Þ½ � � v½ �ð Þ ¼ 0; ðC:4Þ

which corresponds to the characteristic equation for
p �ð Þ½ � � v½ � with H0 as an eigenvalue. Hence, the critical hard-
ening modulus is given by

Hcrit
0 ¼ max

knk¼1
max

K
kK p nð Þ½ � � v½ �ð Þ: ðC:5Þ

(c) For an arbitrary ‘ such that ‘– 0 and ‘ – 1, one has

a‘H
2
‘ þ b‘ nð ÞH‘ þ c nð Þ ¼ 0; ðC:6Þ

where a‘ ¼ 1� ‘2
� �

; c nð Þ ¼ det p nð Þ½ � � v½ �ð Þ, and

b‘ nð Þ ¼ ‘adj p nð Þ½ � � v½ �ð Þ
: im½ � þ 1� ‘ð Þadj p nð Þ½ � � v½ �ð Þ : 1½ �: ðC:7Þ
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Given a normal n, the above second-order equation can easily
be solved for the hardening modulus, yielding n# H‘ nð Þ, in
order to deduce the critical hardening modulus

Hcrit
‘ ¼ maxknk¼1H‘ nð Þ. Different cases have to be distin-

guished depending on the value of the parameter ‘.
Appendix D. Implicit integration scheme

The elasto-plastic constitutive problem is solved with an impli-
cit integration scheme. A general implicit integration scheme for
multisurface plasticity has been proposed by Simo et al. (1988)
and recently reformulated in principal stress space by
Karaoulanis (2013). It should be noted that there also exist fully
implicit integration schemes for the Tresca criterion with isotropic
hardening (Perić and de Souza Neto, 1999; Sysala et al., 2016) and
for the yield function given by Eq. (63) (Larsson and Runesson,
1996). Herein, we have recourse to the general procedure
described by Simo et al. (1988) in order to easily accommodate
any yield function expressed in terms of principal stresses. At a
fixed Gauss point, given een; pn, and Denþ1 at a given time increment
tn, we seek the updated tensor eenþ1 and the increments of the
Lagrange multipliers Dcj;nþ1 for j ¼ 1; . . . ;m. A sketch of the algo-
rithm is given in the box Algorithm 1. It consists in solving the
residual equation r 	 re; r/ð Þ ¼ 0 for the principal stresses r̂nþ1,
the internal variable pnþ1, and the set of Lagrange multipliers

Dcj;nþ1

n o
j2J

where

re ¼ C½ ��1 r̂nþ1 � r̂trial
nþ1

� �þX
j2J

Dcj;nþ1n̂j; r/j

¼ /j r̂nþ1;Rnþ1ð Þ; j 2 J; ðD:1Þ
where

 the vectors gathering the ordered principal stresses and elastic
strains are related by r̂nþ1 ¼ C½ �ênþ1, in which the matrix C½ � can
easily be deduced from the entries of the fourth-order elasticity
tensor C;

 the updated yield stress is given by Rnþ1 ¼ R pn þ
P

j2JDcj;nþ1

� �
;

 the yield function has been written in terms of the principal
stresses, i.e.,
/̂j r̂; rð Þ ¼ /j

X3
i¼1

r̂iMi; r

 !
; j ¼ 1; . . . ;m; ðD:2Þ

for any yield stress r, where Mi; i ¼ 1;2;3, denotes the elements
of the eigenbasis of the stress tensor,

 and the vectors n̂1; n̂2 and n̂3 correspond to the first-order par-
tial derivatives of the yield function with respect to the ordered
principal stresses, i.e.,
n̂1 ¼
a1
a2
a3

264
375

eið Þ3i¼1

; n̂2 ¼
a2
a1
a3

264
375

eið Þ3i¼1

; n̂3 ¼
a1
a3
a2

264
375

eið Þ3i¼1

:

ðD:3Þ

By having recourse to a Newton–Raphson procedure, one has to
solve the following sequence until convergence has been met:

k P 0 : J g kð Þ� �� 
g kþ1ð Þ � g kð Þ� � ¼ �r g kð Þ� �

; g kð Þ

	 r̂ kð Þ
nþ1;a

kð Þ
nþ1; Dc kð Þ

j;nþ1

� �
j2J


 �
; ðD:4Þ

where J g kð Þ� �� 
denotes the jacobian matrix for a given value g kð Þ of

the unknowns. The jacobian matrix is populated by the partial
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derivatives of the residuals re and r/ with respect to r̂ kð Þ
nþ1;p

kð Þ
nþ1,

and Dc kð Þ
j;nþ1

� �
j2J

. In addition, the consistent tangent matrix that is

necessary for the global Newton–Raphson scheme (at the structural
level) is computed using the systematic approach presented by, e.g.,
Borja et al. (2003). Once the Newton–Raphson procedure has con-

verged for some kI, the Jacobian matrix J g kIð Þ� �h i
is assembled

for the solution g kIð Þ. The consistent tangent matrix is then given
by the first 6� 6ð Þ block of the inverse of the jacobian matrix

J g kIð Þ� �h i�1
.

Algorithm1: Implicit integration scheme
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Sysala, S., Čermák, M., Ligurský, T., 2017. Subdifferential-based implicit return-
mapping operators in Mohr-Coulomb plasticity. ZAMM Z. Angew. Math. Mech.
97, 1502–1523.

van Tiel, J., 1984. Convex analysis. John Wiley.
Triantafyllidis, N., Needleman, A., Tvergaard, V., 1982. On the development of shear

bands in pure bending. Int. J. Solids Struct. 18, 121–138.
Tvergaard, V., Needleman, A., Lo, K., 1981. Flow localization in the plane strain

tensile test. J. Mech. Phys. Solids 29, 115–142.
Vallée, C., He, Q.C., Lerintiu, C., 2006. Convex analysis of the eigenvalues of a 3d

second-order symmetric tensor. J. Elastic. 83, 191–204.
Yu, M., 1983. Twin shear stress yield criterion. Int. J. Mech. Sci. 25, 71–74.
Zhang, S., Jiang, X., Xiang, C., Deng, L., Li, Y., 2020. Proposal and application of a new

yield criterion for metal plastic deformation. Arch. Appl. Mech. 90, 1705–1722.

http://refhub.elsevier.com/S0020-7683(21)00075-5/h0065
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0065
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0070
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0070
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0075
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0075
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0080
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0080
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0080
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0085
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0090
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0090
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0090
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0095
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0095
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0100
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0100
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0105
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0105
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0105
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0110
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0110
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0110
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0115
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0115
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0120
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0120
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0125
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0125
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0125
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0130
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0130
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0130
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0135
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0135
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0140
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0140
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0145
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0145
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0150
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0150
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0155
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0160
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0160
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0160
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0165
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0165
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0170
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0170
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0175
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0180
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0180
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0185
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0185
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0190
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0190
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0190
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0190
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0195
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0195
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0195
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0205
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0205
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0205
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0205
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0210
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0215
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0215
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0215
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0220
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0220
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0230
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0230
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0230
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0235
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0235
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0240
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0240
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0245
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0245
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0250
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0250
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0255
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0255
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0255
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0260
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0260
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0260
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0265
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0270
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0270
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0275
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0275
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0280
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0280
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0285
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0290
http://refhub.elsevier.com/S0020-7683(21)00075-5/h0290

	Loss of ellipticity analysis in non-smooth plasticity
	1 Introduction
	2 Non-smooth plasticity
	2.1 Initial boundary value problem and flow rule
	2.2 Multisurface plasticity deduced from convex analysis

	3 Conditions for shear band bifurcation in non-smooth plasticity
	3.1 Case of a single active mechanism
	3.2 Case of multiple active mechanisms
	3.3 Numerical detection of loss of ellipticity in non-smooth plasticity

	4 Family of linear yield criteria in principal stress space
	4.1 Flow rule associated to the family of linear yield functions in principal stress space
	4.2 Critical hardening moduli
	4.2.1 Critical hardening modulus on the smooth portion of the yield surfaces
	4.2.2 Critical hardening moduli on the corners of the yield surface


	5 Numerical examples
	5.1 Softening cube undergoing tension
	5.2 Thin softening plate undergoing tension
	5.3 Experimental tubular specimen undergoing tension and torsion
	5.3.1 Experimental tubular specimen undergoing pure torsion
	5.3.2 Experimental tubular specimen undergoing simple tension
	5.3.3 Experimental tubular specimen undergoing combined torsion-tension


	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Subdifferential set for the family of yield criteria linear in principal stresses
	Appendix B Multisurface flow rule
	Appendix C Explicit expressions of the critical hardening moduli in the case of two active mechanisms
	Appendix D Implicit integration scheme
	References


