
Twinning in face centered cubic metals

We consider FCC (face centered cubic) single crystals. The lattice coordinate frame is defined
by the Cartesian vectors:

d 1 = [100], d 2 = [010], d 3 = [001]

Vector components with respect to this coordinate system are denoted with the sign ] in the
form:

t = t]i d i

where repeated indices are summed.

1 Elements of twinning in FCC metals and alloys

Figure 1: Characteristics of the twin boundary and orientations of crystals, after [1]. We call
A the crystal below the plane and B the twin crystal above the plane. These names are not
indicated on the drawing (the letter A here has a different meaning).

Twin crystals with FCC lattice possess specific orientations relationships represented in
Fig. 1. We call A and B the two crystals separated a grain boundary called called twin
boundary. The twin boundary is the (11̄1) plane in crystals A and B. Let us define the vectors



(X 1,X 2,X 3) where X 3 is parallel to the normal to the twin boundary, X 1 is parallel to the
lattice direction [121] of the mother crystal A. In that case, according to figure 1, the vector
X 1 coincides with the direction [1̄2̄1̄] in the twinned crystal B. As a result:
In crystal A:

X 1 = [121]A, X 2 = [1̄01]A, X 3 = [11̄1]A

In crystal B:
X 1 = [1̄2̄1̄]B, X 2 = [101̄]B, X 3 = [11̄1]B

Let us define the corresponding normalized vectors in crystal A:

e 1 = [121]/
√

6, e 2 = [1̄01]/
√

2, e 3 = [11̄1]/
√

3

The transformation from mother orientation A to twin orientation B is the 180◦ rotation1 with
respect to axis e 3:

S∼ 1
= −e 1 ⊗ e 1 − e 2 ⊗ e 2 + e 3 ⊗ e 3

Give the matrix form of this rotation using the components in the lattice coordinate system of
crystal A.
Give the components of images of the basis vectors e 1, e 2 and e 3 in the lattice coordinate frame
of crystal A.

The matrix form of the rotation in the lattice coordinate system ]A is

1

3

 −1 −2 2
−2 −1 −2
2 −2 −1


]A

This rotation transforms the frame (e 1, e 2, e 3) into (−e 1,−e 2, e 3).

e ′1 = −e 1 = [1̄2̄1̄]A/
√

6, e ′2 = −e 2 = [101̄]A/
√

2, e ′3 = e 3 = [11̄1]A/
√

3

2 Anisotropic elasticity

In this section, the single crystals undergo only elastic deformation.

2.1 Fourth rank tensors for cubic elasticity

We introduce the fourth order tensors I
≈
,J

≈
and K

≈
acting on symmetric second order tensors

A∼ in the following way:

I
≈

: A∼ = A∼ , J
≈

: A∼ =
1

3
(traceA∼ )1∼, K

≈
: A∼ = A∼

dev (1)

where A∼
dev is the deviatoric part of A∼ . It is apparent that I

≈
= J

≈
+K

≈
.

Isotropic fourth order tensors of elasticity take the form:

C
≈

= 3κJ
≈

+ 2µK
≈
, S

≈
=

1

3κ
J
≈

+
1

2µ
K
≈

1It is the composition of mirror symmetry with respect to (11̄1) and a central symmetry to restore the
orientation of the triad.



with κ, the bulk modulus, and µ, the shear modulus.
The fourth order tensor of elastic moduli is C

≈
and its inverse, S

≈
, is the fourth rank tensor of

elastic compliance.
For cubic tensors, we introduce

D
≈

= d 1 ⊗ d 1 ⊗ d 1 ⊗ d 1 + d 2 ⊗ d 2 ⊗ d 2 ⊗ d 2 + d 3 ⊗ d 3 ⊗ d 3 ⊗ d 3

where d i are the three cubic directions < 100 > of the lattice, as earlier defined. The deviatoric
projection tensor K

≈
is then decomposed into:

K
≈

= K
≈ a +K

≈ b, with K
≈ a = D

≈
− J

≈

. The action of K
≈ a and K

≈ b on symmetric second order tensors is as follows: a]11 a]12 a]13
a]12 a]22 a]23
a]13 a]23 a]33

Ka−→

 a]11 0 0
0 a]22 0
0 0 a]33

− a]11 + a]22 + a]33
3

 1 0 0
0 1 0
0 0 1


 a]11 a]12 a]13
a]12 a]22 a]23
a]13 a]23 a]33

 Kb−→

 0 a]12 a]13
a]12 0 a]23
a]13 a]23 0


in the cubic lattice coordinate frame.
The fourth tensor of elastic moduli takes the following form in the case of cubic elasticity [2, 3]:

C
≈

= 3κJ
≈

+ 2µaK≈ a + 2µbK≈ b, S
≈

=
1

3κ
J
≈

+
1

2µa

K
≈ a +

1

2µb

K
≈ b (2)

The moduli κ, µa, µb are directly related to the three independent Voigt components:

3κ = C11 + 2C12, 2µa = C11 − C12, 2µb = 2C44

The isotropic case is retrieved when the anisotropy coefficient

a =
2C44

C11 − C12

= 1

In the case of an austenitic steel 316L (used in particular for components in nuclear reactors)
having the following elasticity moduli:

C11 = 199000 MPa, C12 = 136000 MPa, C44 = 105000 MPa

compute the bulk and shear moduli κ, µa, µb and the anisotropy coefficient a. Comment the
latter result.

We find

κ = 157000 MPa, µa = 31500 MPa, µb = 105000 MPa, a = 3.33

The anisotropy is strong and comparable to that of pure copper.



2.2 Single crystal in tension along an arbitrary direction

The tensile stress tensor is
σ∼ = σ t ⊗ t

where the tensile direction t , taken as a unit vector, has the lattice components t]1, t]2, t]3.
The strain tensor induced by tension is obtained from Hooke’s law:

ε∼ = σS
≈

: (t ⊗ t )

Check that the application of Hooke’s law (2) provides the following components of the strain
in the lattice coordinate frame A:

ε]11 = σ(
1

9κ
+

1

2µa

(t2]1 −
1

3
))

ε]22 = σ(
1

9κ
+

1

2µa

(t2]2 −
1

3
))

ε]33 = σ(
1

9κ
+

1

2µa

(t2]3 −
1

3
))

ε]12 =
σ

2µb

t]1t]2

ε]23 =
σ

2µb

t]2t]3

ε]31 =
σ

2µb

t]3t]1

where t]1, t]2 and t]3 are the components of the tensile direction in the lattice coordinate frame
A.

2.3 Tension along [121]

Compute the elastic strain lattice components when the single crystal A is submitted to simple
tension in the direction [121].
The components of this strain tensor with respect to the orthonormal basis (e 1, e 2, e 3) can be
computed as2:

[ε∼](e 1,e 2,e 3)
= σ × 10−6

 2.867 0 −1.309
0 −1.366 0

−1.309 0 −0.4398


(e 1,e 2,e 3)

in the case of an austenitic steel single crystal. Give then the components with respect to the
same coordinate frame (e 1, e 2, e 3) of the strain tensor of single crystal B subjected to tension
along the same direction e 1.
Justify then that the tensile deformation of the twin with periodic boundary conditions looks like
the deformed finite element mesh of figure 2, when it is loaded along the direction e 1.

For t]1 = 1/
√

6, t]2 = 2/
√

6, t]3 = 1/
√

6, we find

ε]11 = ε]33 = σ(
1

9κ
− 1

6µa

), ε]22 = σ(
1

9κ
+

1

6µa

)

2It is not requested to make the calculation.



ε]12 = ε]23 =
σ

6µb

, ε]31 =
σ

12µb

The basis (e 1, e 2, e 3) represents the definition basis for the finite element mesh of the twin
laminate. The deformed crystal B is obtained by the 180◦–rotation around e 3. Therefore,

[ε∼](e 1,e 2,e 3)
= σ × 10−6

 2.867 0 1.309
0 −1.366 0

1.309 0 −0.4398


(e 1,e 2,e 3)

The shear component in the plane 1–3 is opposite. When both crystals are glued allowing for
periodic boundary conditions, both deformations are compatible and the deformed shape is the
arrow of figure 2.

e1

e3

Figure 2: Tension of a twin laminate with periodicity conditions. The horizontal direction x
is the tensile direction. The vertical direction z is the normal to the twin boundary. The red
and blue colors denote the A and B crystals. Deformation is strongly magnified compared to
reality.

3 Plastic slip activity in the twin boundary

The twin made of the crystals A and B is subjected to simple tension along the direction

t = cosαe 1 + sinαe 3

where α denotes the angle between tensile direction and direction e 1. It is assumed that the
stress state in each crystal also simple tension along t with corresponding stress σ.

Compute the Schmid factors for the slip systems with slip plane parallel to the twin boundary.
For which angle α does the resolved shear stress on these slip systems reach a maximum value?

The tensile direction can be written in the form:

t =
cosα√

6
[121] +

sinα√
3

[11̄1]



The three candidate slip systems are (11̄1)[1̄01]; (11̄1)[110] and (11̄1)[0̄11]. The first slip system
cannot be activated since [1̄01] is orthogonal to both e 1 and e 2. We compute the following
scalar products:

t · [11̄1]/
√

3 = sinα

t · [110]/
√

2 = t · [011]/
√

2 =

√
3

6
cosα

The two last slip systems therefore have the same Schmid factor equal to

M =

√
3 sinα cosα

6
=

√
3

12
sin 2α

which takes the maximum value for α = ±45◦
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