Twinning in face centered cubic metals

We consider FCC (face centered cubic) single crystals. The lattice coordinate frame is defined by the Cartesian vectors:

$$
\underline{\boldsymbol{d}}_{1}=[100], \quad \underline{\boldsymbol{d}}_{2}=[010], \quad \underline{\boldsymbol{d}}_{3}=[001]
$$

Vector components with respect to this coordinate system are denoted with the sign \sharp in the form:

$$
\underline{\boldsymbol{t}}=t_{\sharp i} \underline{\boldsymbol{d}}_{i}
$$

where repeated indices are summed.

1 Elements of twinning in FCC metals and alloys

Figure 1: Characteristics of the twin boundary and orientations of crystals, after [1]. We call A the crystal below the plane and B the twin crystal above the plane. These names are not indicated on the drawing (the letter A here has a different meaning).

Twin crystals with FCC lattice possess specific orientations relationships represented in Fig. 1. We call A and B the two crystals separated a grain boundary called called twin boundary. The twin boundary is the ($1 \overline{1} 1$) plane in crystals A and B. Let us define the vectors
$\left(\underline{\boldsymbol{X}}_{1}, \underline{\boldsymbol{X}}_{2}, \underline{\boldsymbol{X}}_{3}\right)$ where $\underline{\boldsymbol{X}}_{3}$ is parallel to the normal to the twin boundary, $\underline{\boldsymbol{X}}_{1}$ is parallel to the lattice direction [121] of the mother crystal A. In that case, according to figure 1, the vector $\underline{\boldsymbol{X}}_{1}$ coincides with the direction $[\overline{1} \overline{2} \overline{1}]$ in the twinned crystal B. As a result:
In crystal A:

$$
\underline{\boldsymbol{X}}_{1}=[121]_{A}, \quad \underline{\boldsymbol{X}}_{2}=[\overline{1} 01]_{A}, \quad \underline{\boldsymbol{X}}_{3}=[1 \overline{1} 1]_{A}
$$

In crystal B:

$$
\underline{\boldsymbol{X}}_{1}=[\overline{1} \overline{2} \overline{1}]_{B}, \quad \underline{\boldsymbol{X}}_{2}=[10 \overline{1}]_{B}, \quad \underline{\boldsymbol{X}}_{3}=[1 \overline{1} 1]_{B}
$$

Let us define the corresponding normalized vectors in crystal A:

$$
\underline{\boldsymbol{e}}_{1}=[121] / \sqrt{6}, \underline{\boldsymbol{e}}_{2}=[\overline{1} 01] / \sqrt{2}, \underline{\boldsymbol{e}}_{3}=[1 \overline{1} 1] / \sqrt{3}
$$

The transformation from mother orientation A to twin orientation B is the 180° rotation 1 with respect to axis $\underline{\boldsymbol{e}}_{3}$:

$$
{\underset{\sim}{\boldsymbol{S}}}_{1}=-\underline{\boldsymbol{e}}_{1} \otimes \underline{\boldsymbol{e}}_{1}-\underline{\boldsymbol{e}}_{2} \otimes \underline{\boldsymbol{e}}_{2}+\underline{\boldsymbol{e}}_{3} \otimes \underline{\boldsymbol{e}}_{3}
$$

Give the matrix form of this rotation using the components in the lattice coordinate system of crystal A.
Give the components of images of the basis vectors $\underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}$ and $\underline{\boldsymbol{e}}_{3}$ in the lattice coordinate frame of crystal A.
The matrix form of the rotation in the lattice coordinate system $\sharp A$ is

$$
\frac{1}{3}\left[\begin{array}{ccc}
-1 & -2 & 2 \\
-2 & -1 & -2 \\
2 & -2 & -1
\end{array}\right]_{\sharp A}
$$

This rotation transforms the frame $\left(\underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)$ into $\left(-\underline{\boldsymbol{e}}_{1},-\underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)$.

$$
\underline{\boldsymbol{e}}_{1}^{\prime}=-\underline{\boldsymbol{e}}_{1}=[\overline{1} \overline{1} \overline{1}]_{A} / \sqrt{6}, \underline{\boldsymbol{e}}_{2}^{\prime}=-\underline{\boldsymbol{e}}_{2}=[10 \overline{1}]_{A} / \sqrt{2}, \underline{\boldsymbol{e}}_{3}^{\prime}=\underline{\boldsymbol{e}}_{3}=[1 \overline{1} 1]_{A} / \sqrt{3}
$$

2 Anisotropic elasticity

In this section, the single crystals undergo only elastic deformation.

2.1 Fourth rank tensors for cubic elasticity

We introduce the fourth order tensors $\underset{\sim}{\boldsymbol{I}}, \underset{\sim}{\boldsymbol{J}}$ and $\underset{\sim}{\boldsymbol{K}}$ acting on symmetric second order tensors $\underset{\sim}{\boldsymbol{A}}$ in the following way:

$$
\begin{equation*}
\underset{\sim}{\boldsymbol{I}}: \underset{\sim}{\boldsymbol{A}}=\underset{\sim}{\boldsymbol{A}}, \quad \underset{\sim}{\boldsymbol{J}}: \underset{\sim}{\boldsymbol{A}}=\frac{1}{3}(\operatorname{trace} \underset{\sim}{\boldsymbol{A}}) \underset{\sim}{\mathbf{1}}, \quad \underset{\sim}{\boldsymbol{K}}: \underset{\sim}{\boldsymbol{A}}={\underset{\sim}{\boldsymbol{A}}}^{\mathrm{dev}} \tag{1}
\end{equation*}
$$

where ${\underset{\sim}{A}}^{\text {dev }}$ is the deviatoric part of $\underset{\sim}{\boldsymbol{A}}$. It is apparent that $\underset{\sim}{\boldsymbol{I}}=\underset{\sim}{\boldsymbol{J}}+\underset{\sim}{\boldsymbol{K}}$.
Isotropic fourth order tensors of elasticity take the form:

$$
\underset{\sim}{\boldsymbol{C}}=3 \kappa \underset{\sim}{\boldsymbol{J}}+2 \mu \underset{\sim}{\boldsymbol{K}}, \quad \underset{\sim}{\boldsymbol{S}}=\frac{1}{3 \kappa} \underset{\sim}{\boldsymbol{J}}+\frac{1}{2 \mu} \underset{\sim}{\boldsymbol{K}}
$$

[^0]with κ, the bulk modulus, and μ, the shear modulus.
The fourth order tensor of elastic moduli is $\underset{\sim}{\boldsymbol{C}}$ and its inverse, $\underset{\sim}{\boldsymbol{S}}$, is the fourth rank tensor of elastic compliance.
For cubic tensors, we introduce
$$
\underset{\sim}{\boldsymbol{D}}=\underline{\boldsymbol{d}}_{1} \otimes \underline{\boldsymbol{d}}_{1} \otimes \underline{d}_{1} \otimes \underline{\boldsymbol{d}}_{1}+\underline{\boldsymbol{d}}_{2} \otimes \underline{\boldsymbol{d}}_{2} \otimes \underline{\boldsymbol{d}}_{2} \otimes \underline{\boldsymbol{d}}_{2}+\underline{\boldsymbol{d}}_{3} \otimes \underline{\boldsymbol{d}}_{3} \otimes \underline{\boldsymbol{d}}_{3} \otimes \underline{\boldsymbol{d}}_{3}
$$
where $\underline{\boldsymbol{d}}_{i}$ are the three cubic directions $<100>$ of the lattice, as earlier defined. The deviatoric projection tensor $\underset{\sim}{\boldsymbol{K}}$ is then decomposed into:
$$
\underset{\sim}{\boldsymbol{K}}=\underset{\sim}{\boldsymbol{K}}{ }_{a}+\underset{\approx}{\boldsymbol{K}} b, \quad \text { with } \quad \underset{\sim}{\boldsymbol{K}}{ }_{a}=\underset{\sim}{\boldsymbol{D}}-\underset{\sim}{\boldsymbol{J}}
$$
. The action of $\underset{\sim}{\boldsymbol{K}}{ }_{a}$ and $\underset{\sim}{\boldsymbol{K}}$ b on symmetric second order tensors is as follows:
\[

$$
\begin{gathered}
{\left[\begin{array}{ccc}
a_{\sharp 11} & a_{\sharp 12} & a_{\sharp 13} \\
a_{\sharp 12} & a_{\sharp 22} & a_{\sharp 23} \\
a_{\sharp 13} & a_{\sharp 23} & a_{\sharp 33}
\end{array}\right] \xrightarrow{\boldsymbol{K}_{q}}\left[\begin{array}{ccc}
a_{\sharp 11} & 0 & 0 \\
0 & a_{\sharp 22} & 0 \\
0 & 0 & a_{\sharp 33}
\end{array}\right]-\frac{a_{\sharp 11}+a_{\sharp 22}+a_{\sharp 33}}{3}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
\\
\\
\\
\end{gathered}
$$
\]

in the cubic lattice coordinate frame.
The fourth tensor of elastic moduli takes the following form in the case of cubic elasticity [2, 3]:

$$
\begin{equation*}
\underset{\sim}{\boldsymbol{C}}=3 \kappa \underset{\sim}{\boldsymbol{J}}+2 \mu_{a} \underset{\sim}{\boldsymbol{K}} a+2 \mu_{b} \underset{\sim}{\boldsymbol{K}} b, \quad \underset{\sim}{\boldsymbol{S}}=\frac{1}{3 \kappa} \underset{\sim}{\boldsymbol{J}}+\frac{1}{2 \mu_{a}} \underset{\sim}{\boldsymbol{K}} a+\frac{1}{2 \mu_{b}} \underset{\sim}{\boldsymbol{K}} b \tag{2}
\end{equation*}
$$

The moduli κ, μ_{a}, μ_{b} are directly related to the three independent Voigt components:

$$
3 \kappa=C_{11}+2 C_{12}, \quad 2 \mu_{a}=C_{11}-C_{12}, \quad 2 \mu_{b}=2 C_{44}
$$

The isotropic case is retrieved when the anisotropy coefficient

$$
a=\frac{2 C_{44}}{C_{11}-C_{12}}=1
$$

In the case of an austenitic steel 316L (used in particular for components in nuclear reactors) having the following elasticity moduli:

$$
C_{11}=199000 \mathrm{MPa}, \quad C_{12}=136000 \mathrm{MPa}, \quad C_{44}=105000 \mathrm{MPa}
$$

compute the bulk and shear moduli κ, μ_{a}, μ_{b} and the anisotropy coefficient a. Comment the latter result.

We find

$$
\kappa=157000 \mathrm{MPa}, \quad \mu_{a}=31500 \mathrm{MPa}, \quad \mu_{b}=105000 \mathrm{MPa}, \quad a=3.33
$$

The anisotropy is strong and comparable to that of pure copper.

2.2 Single crystal in tension along an arbitrary direction

The tensile stress tensor is

$$
\underset{\sim}{\boldsymbol{\sigma}}=\sigma \underline{\boldsymbol{t}} \otimes \underline{\boldsymbol{t}}
$$

where the tensile direction $\underline{\boldsymbol{t}}$, taken as a unit vector, has the lattice components $t_{\sharp 1}, t_{\sharp 2}, t_{\sharp 3}$.
The strain tensor induced by tension is obtained from Hooke's law:

$$
\underset{\sim}{\boldsymbol{\varepsilon}}=\sigma \underset{\sim}{\boldsymbol{S}}:(\underline{\boldsymbol{t}} \otimes \underline{\boldsymbol{t}})
$$

Check that the application of Hooke's law (2) provides the following components of the strain in the lattice coordinate frame A :

$$
\begin{aligned}
\varepsilon_{\sharp 11} & =\sigma\left(\frac{1}{9 \kappa}+\frac{1}{2 \mu_{a}}\left(t_{\sharp 1}^{2}-\frac{1}{3}\right)\right) \\
\varepsilon_{\sharp 22} & =\sigma\left(\frac{1}{9 \kappa}+\frac{1}{2 \mu_{a}}\left(t_{\sharp 2}^{2}-\frac{1}{3}\right)\right) \\
\varepsilon_{\sharp 33} & =\sigma\left(\frac{1}{9 \kappa}+\frac{1}{2 \mu_{a}}\left(t_{\sharp 3}^{2}-\frac{1}{3}\right)\right) \\
\varepsilon_{\sharp 12} & =\frac{\sigma}{2 \mu_{b}} t_{\sharp 1} t_{\sharp 2} \\
\varepsilon_{\sharp 23} & =\frac{\sigma}{2 \mu_{b}} t_{\sharp 2} t_{\sharp 3} \\
\varepsilon_{\sharp 31} & =\frac{\sigma}{2 \mu_{b}} t_{\sharp 3} t_{\sharp 1}
\end{aligned}
$$

where $t_{\sharp 1}, t_{\sharp 2}$ and $t_{\sharp 3}$ are the components of the tensile direction in the lattice coordinate frame A.

2.3 Tension along [121]

Compute the elastic strain lattice components when the single crystal A is submitted to simple tension in the direction [121].
The components of this strain tensor with respect to the orthonormal basis $\left(\underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)$ can be computed as ${ }^{2}$:

$$
\left[\boldsymbol{\varepsilon}_{\sim}^{]} \underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)=\sigma \times 10^{-6}\left[\begin{array}{ccc}
2.867 & 0 & -1.309 \\
0 & -1.366 & 0 \\
-1.309 & 0 & -0.4398
\end{array}\right]_{\left(\underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)}
$$

in the case of an austenitic steel single crystal. Give then the components with respect to the same coordinate frame $\left(\underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)$ of the strain tensor of single crystal B subjected to tension along the same direction $\underline{\boldsymbol{e}}_{1}$.
Justify then that the tensile deformation of the twin with periodic boundary conditions looks like the deformed finite element mesh of figure 2, when it is loaded along the direction $\underline{\boldsymbol{e}}_{1}$.

For $t_{\sharp 1}=1 / \sqrt{6}, t_{\sharp 2}=2 / \sqrt{6}, t_{\sharp 3}=1 / \sqrt{6}$, we find

$$
\varepsilon_{\sharp 11}=\varepsilon_{\sharp 33}=\sigma\left(\frac{1}{9 \kappa}-\frac{1}{6 \mu_{a}}\right), \quad \varepsilon_{\sharp 22}=\sigma\left(\frac{1}{9 \kappa}+\frac{1}{6 \mu_{a}}\right)
$$

[^1]$$
\varepsilon_{\sharp 12}=\varepsilon_{\sharp 23}=\frac{\sigma}{6 \mu_{b}}, \quad \varepsilon_{\sharp 31}=\frac{\sigma}{12 \mu_{b}}
$$

The basis $\left(\underline{\boldsymbol{e}}_{1}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)$ represents the definition basis for the finite element mesh of the twin laminate. The deformed crystal B is obtained by the 180°-rotation around \underline{e}_{3}. Therefore,

$$
[\boldsymbol{\xi}]_{\left(\boldsymbol{e}_{1}, \underline{e}_{2}, \underline{\boldsymbol{e}}_{3}\right)}=\sigma \times 10^{-6}\left[\begin{array}{ccc}
2.867 & 0 & 1.309 \\
0 & -1.366 & 0 \\
1.309 & 0 & -0.4398
\end{array}\right]_{\left(\underline{\boldsymbol{e}_{1}}, \underline{\boldsymbol{e}}_{2}, \underline{\boldsymbol{e}}_{3}\right)}
$$

The shear component in the plane $1-3$ is opposite. When both crystals are glued allowing for periodic boundary conditions, both deformations are compatible and the deformed shape is the arrow of figure 2 .

Figure 2: Tension of a twin laminate with periodicity conditions. The horizontal direction x is the tensile direction. The vertical direction z is the normal to the twin boundary. The red and blue colors denote the A and B crystals. Deformation is strongly magnified compared to reality.

3 Plastic slip activity in the twin boundary

The twin made of the crystals A and B is subjected to simple tension along the direction

$$
\underline{\boldsymbol{t}}=\cos \alpha \underline{\boldsymbol{e}}_{1}+\sin \alpha \underline{\boldsymbol{e}}_{3}
$$

where α denotes the angle between tensile direction and direction $\underline{\boldsymbol{e}}_{1}$. It is assumed that the stress state in each crystal also simple tension along $\underline{\boldsymbol{t}}$ with corresponding stress σ.

Compute the Schmid factors for the slip systems with slip plane parallel to the twin boundary. For which angle α does the resolved shear stress on these slip systems reach a maximum value?

The tensile direction can be written in the form:

$$
\underline{\boldsymbol{t}}=\frac{\cos \alpha}{\sqrt{6}}[121]+\frac{\sin \alpha}{\sqrt{3}}[1 \overline{1} 1]
$$

The three candidate slip systems are ($1 \overline{1} 1)[\overline{1} 01] ;(1 \overline{1} 1)[110]$ and $(1 \overline{1} 1)[\overline{0} 11]$. The first slip system cannot be activated since [101] is orthogonal to both $\underline{\boldsymbol{e}}_{1}$ and $\underline{\boldsymbol{e}}_{2}$. We compute the following scalar products:

$$
\begin{gathered}
\underline{\boldsymbol{t}} \cdot[1 \overline{1} 1] / \sqrt{3}=\sin \alpha \\
\underline{\boldsymbol{t}} \cdot[110] / \sqrt{2}=\underline{\boldsymbol{t}} \cdot[011] / \sqrt{2}=\frac{\sqrt{3}}{6} \cos \alpha
\end{gathered}
$$

The two last slip systems therefore have the same Schmid factor equal to

$$
M=\frac{\sqrt{3} \sin \alpha \cos \alpha}{6}=\frac{\sqrt{3}}{12} \sin 2 \alpha
$$

which takes the maximum value for $\alpha= \pm 45^{\circ}$

References

[1] M Niewczas. Dislocations in Solids, F.R.N. Nabarro and J.P. Hirth, editors, vol. 13, chapter Dislocations and Twinning in Face Centered Cubic Crystals, pages 263-364. Elsevier, Berlin, 2007.
[2] M. Bornert, T. Bretheau, and P. Gilormini. Homogénéisation en mécanique des matériaux. Hermès, 2001.
[3] J. Qu and M. Cherkaoui. Fundamentals of micromechanics of solids. Wiley, Hoboken, New Jersey, USA, 2006.

[^0]: ${ }^{1}$ It is the composition of mirror symmetry with respect to $(1 \overline{1} 1)$ and a central symmetry to restore the orientation of the triad.

[^1]: ${ }^{2}$ It is not requested to make the calculation.

